Abstract

Motivated by the fact that nearly all conditional logics are axiomatised by so-called shallow axioms (axioms with modal nesting depth ≤ 1) we investigate sequent calculi and cut elimination for modal logics of this type. We first provide a generic translation of shallow axioms to (one-sided, unlabelled) sequent rules. The resulting system is complete if we admit pseudo-analytic cut, i.e. cuts on modalised propositional combinations of subformulas, leading to a generic (but sub-optimal) decision procedure. In a next step, we show that, for finite sets of axioms, only a small number of cuts is needed between any two applications of modal rules. More precisely, completeness still holds if we restrict to cuts that form a tree of logarithmic height between any two modal rules. In other words, we obtain a small (Pspace-computable) representation of an extended rule set for which cut elimination holds. In particular, this entails Pspace decidability of the underlying logic if contraction is also admissible. This leads to (tight) Pspace bounds for various conditional logics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avron, A., Lev, I.: Canonical propositional gentzen-type systems. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 529–544. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Ciabattoni, A., Leitsch, A.: Towards an algorithmic construction of cut-elimination procedures. Math. Struct. in Comp. Sci. 18(1), 81–105 (2008)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Esparza, J., Nielsen, M.: Decidability issues for petri nets - a survey. Bulletin of the EATCS 52, 244–262 (1994)MATHGoogle Scholar
  4. 4.
    Heuerding, A., Seyfried, M., Zimmermann, H.: Efficient loop-check for backward proof search in some non-classical propositional logics. In: Miglioli, P., Moscato, U., Ornaghi, M., Mundici, D. (eds.) TABLEAUX 1996. LNCS, vol. 1071, pp. 210–225. Springer, Heidelberg (1996)Google Scholar
  5. 5.
    Lewis II, P.M., Stearns, R.E., Hartmanis, J.: Memory bounds for recognition of context-free and context-sensitive languages. In: FOCS, pp. 191–202 (1965)Google Scholar
  6. 6.
    Kurucz, Á., Németi, I., Sain, I., Simon, A.: Decidable and undecidable logics with a binary modality. J. of Log., Lang. and Inf. 4(3), 191–206 (1995)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Nute, D., Cross, C.B.: Conditional logic. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 4, pp. 1–98. Kluwer, Dordrecht (2001)CrossRefGoogle Scholar
  8. 8.
    Olivetti, N., Pozzato, G.L., Schwind, C.B.: A sequent calculus and a theorem prover for standard conditional logics. ACM Trans. Comput. Logic 8(4), 22/1–22/51 (2007)Google Scholar
  9. 9.
    Olivetti, N., Schwind, C.B.: A calculus and complexity bound for minimal conditional logic. In: ICTCS, pp. 384–404 (2001)Google Scholar
  10. 10.
    Pattinson, D., Schröder, L.: Beyond rank 1: Algebraic semantics and finite models for coalgebraic logics. In: Amadio, R. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 66–80. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Pattinson, D., Schröder, L.: Generic modal cut elimination applied to conditional logics. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 280–294. Springer, Heidelberg (2009)Google Scholar
  12. 12.
    Rasga, J.: Sufficient conditions for cut elimination with complexity analysis. Ann. Pure Appl.Logic 149, 81–99 (2007)Google Scholar
  13. 13.
    Schröder, L., Pattinson, D.: PSPACE bounds for rank-1 modal logics. ACM Trans. Comput. Logic (TOCL) 10(2), 13:1–13:33 (2009)Google Scholar
  14. 14.
    Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, 2nd edn. Cambridge Tracts In Theoretical Computer Science, vol. 43. Cambridge University Press, Cambridge (2000)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Björn Lellmann
    • 1
  • Dirk Pattinson
    • 1
  1. 1.Department of ComputingImperial College LondonUK

Personalised recommendations