A Tableaux Based Decision Procedure for a Broad Class of Hybrid Formulae with Binders

  • Serenella Cerrito
  • Marta Cialdea Mayer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6793)


In this paper we provide the first (as far as we know) direct calculus deciding satisfiability of formulae in negation normal form in the fragment of hybrid logic with the satisfaction operator and the binder, where no occurrence of the □ operator is in the scope of a binder. A preprocessing step, rewriting formulae into equisatisfiable ones, turns the calculus into a satisfiability decision procedure for the fragment \(\textsf{HL}(@,\mbox{$\mathord\downarrow$})\) \(\setminus\Box \mbox{$\mathord\downarrow$}\Box\), i.e. formulae in negation normal form where no occurrence of the binder is both in the scope of and contains in its scope a □ operator.

The calculus is based on tableaux, where nominal equalities are treated by means of substitution, and termination is achieved by means of a form of anywhere blocking with indirect blocking. Direct blocking is a relation between nodes in a tableau branch, holding whenever the respective labels (formulae) are equal up to (a proper form of) nominal renaming. Indirect blocking is based on a partial order on the nodes of a tableau branch, which arranges them into a tree-like structure.


Decision Procedure Node Label Hybrid Logic Universal Operator Minor Premiss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Areces, C., Blackburn, P., Marx, M.: A road-map on complexity for hybrid logics. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 307–321. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., Wolter, F., van Benthem, J. (eds.) Handbook of Modal Logics, pp. 821–868. Elsevier, Amsterdam (2007)CrossRefGoogle Scholar
  3. 3.
    Blackburn, P., Seligman, J.: Hybrid languages. Journal of Logic, Language and Information 4, 251–272 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bolander, T., Blackburn, P.: Termination for hybrid tableaus. Journal of Logic and Computation 17(3), 517–554 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cerrito, S., Cialdea Mayer, M.: Nominal substitution at work with the global and converse modalities. In: Beklemishev, L., Goranko, V., Shehtman, V. (eds.) Advances in Modal Logic, vol. 8, pp. 57–74. College Publications (2010)Google Scholar
  6. 6.
    Cerrito, S., Cialdea Mayer, M.: A calculus for a decidable fragment of hybrid logic with binders. Technical Report RT-DIA-181-2011, Dipartimento di Informatica e Automazione, Università di Roma Tre (2011),
  7. 7.
    Ganzinger, H., De Nivelle, H.: A superposition decision procedure for the guarded fragment with equality. In: Proc. 14th Symposium on Logic in Computer Science, pp. 295–305. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  8. 8.
    Grädel, E.: On the restraining power of guards. Journal of Symbolic Logic 64, 1719–1742 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hirsch, C., Tobies, S.: A tableau algorithm for the clique guarded fragment. In: Wolter, F., Wansing, H., de Rijke, M., Zakharyaschev, M. (eds.) Advances in Modal Logic, vol. 3, pp. 257–277. CSLI Publications, Stanford (2001)Google Scholar
  10. 10.
    Hladik, J.: Implementation and optimisation of a tableau algorithm for the guarded fragment. In: Egly, U., Fermüller, C.G. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 145–159. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Kaminski, M., Smolka, G.: Terminating tableau systems for hybrid logic with difference and converse. Journal of Logic, Language and Information 18(4), 437–464 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    ten Cate, B., Franceschet, M.: Guarded fragments with constants. Journal of Logic, Language and Information 14, 281–288 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    ten Cate, B.D., Franceschet, M.: On the complexity of hybrid logics with binders. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 339–354. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Serenella Cerrito
    • 1
  • Marta Cialdea Mayer
    • 2
  1. 1.Lab. IbiscUniversité d’Evry Val d’EssonneFrance
  2. 2.Università di Roma TreItaly

Personalised recommendations