Synthesis of Distributed Control through Knowledge Accumulation

  • Gal Katz
  • Doron Peled
  • Sven Schewe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6806)


In distributed systems, local controllers often need to impose global guarantees. A solution that will not impose additional synchronization may not be feasible due to the lack of ability of one process to know the current situation at another. On the other hand, a completely centralized solution will eliminate all concurrency. A good solution is usually a compromise between these extremes, where synchronization is allowed for in principle, but avoided whenever possible. In a quest for practicable solutions to the distributed control problem, one can constrain the executions of a system based on the pre-calculation of knowledge properties and allow for temporary interprocess synchronization in order to combine the knowledge needed to control the system. This type of control, however, may incur a heavy communication overhead. We introduce the use of simple supervisor processes that accumulate information about processes until sufficient knowledge is collected to allow for safe progression. We combine the knowledge approach with a game theoretic search that prevents progressing to states from which there is no way to guarantee the imposed constraints.


Model Check Local Information Reachable State Knowledge Accumulation Output Place 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Basu, A., Bensalem, S., Peled, D., Sifakis, J.: Priority Scheduling of Distributed Systems Based on Model Checking. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 79–93. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Bensalem, S., Bozga, M., Graf, S., Peled, D., Quinton, S.: Methods for knowledge based controlling of distributed systems. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 52–66. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Clarke, E.M.: Synthesis of Resource Invariants for Concurrent Programs. ACM Transactions on Programming Languages and Systems 2(3), 338–358 (1980)CrossRefzbMATHGoogle Scholar
  4. 4.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press, Cambridge (1995)zbMATHGoogle Scholar
  5. 5.
    Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: LICS 2005, Chicago, IL, pp. 321–330 (2005)Google Scholar
  6. 6.
    Graf, S., Peled, D., Quinton, S.: Achieving Distributed Control through Model Checking. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 396–409. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Halpern, J.Y., Zuck, L.: A little knowledge goes a long way: knowledge based derivation and correctness proof for a family of protocols. Journal of the ACM 39(3), 449–478 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Katz, G., Peled, D.: Code Mutation in Verification and Automatic Code Correction. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 435–450. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Keller, R.M.: Formal Verification of Parallel Programs. Communications of the ACM 19, 371–384 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kupferman, O., Vardi, M.Y.: Synthesizing Distributed Systems. In: LICS 2001, Boston, MA (2001)Google Scholar
  11. 11.
    Madhusudan, P., Thiagarajan, P.S.: Distributed Controller Synthesis for Local Specifications. In: Yu, Y., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 396–407. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Manna, Z., Pnueli, A.: How to Cook a Temporal Proof System for Your Pet Language. In: POPL 1983, Austin, TX, pp. 141–154 (1983)Google Scholar
  13. 13.
    van der Meyden, R.: Common Knowledge and Update in Finite Environment. Information and Computation 140, 115–157 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Peled, D., Wilke, T.: Stutter-Invariant Temporal Properties are Expressible without the Text Time Operator. Information Processing Letters 63, 243–246 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Pérez, J.A., Corchuelo, R., Toro, M.: An Order-based Algorithm for Implementing Multiparty Synchronization. Concurrency - Practice and Experience 16(12), 1173–1206 (2004)CrossRefGoogle Scholar
  16. 16.
    Pnueli, A., Rosner, R.: Distributed Reactive Systems are Hard to Synthesize. In: FOCS 1990, St. Louis, Missouri, pp. 746–757 (1990)Google Scholar
  17. 17.
    Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event processes. SIAM Journal on Control and Optimization 25(1), 206–230 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Rudie, K., Ricker, S.L.: Know means no: Incorporating knowledge into discrete-event control systems. IEEE Transactions on Automatic Control 45(9), 1656–1668 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Rudie, K., Wonham, W.M.: Think globally, act locally: descentralized supervisory control. IEEE Transactions on Automatic Control 37(11), 1692–1708 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Schewe, S., Finkbeiner, B.: Synthesis of Asynchronous Systems. In: Puebla, G. (ed.) LOPSTR 2006. LNCS, vol. 4407, pp. 127–142. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Stockmeyer, L.J., Chandra, A.K.: Provably Difficult Combinatorial Games. SIAM Journal of Computing 8, 151–174 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Thistle, J.G.: Undecidability in Descentralized Supervision. Systems and Control Letters 54, 503–509 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Tripakis, S.: Undecidable problems of decentralized observation and control on regular languages. Information Processing Letters 90(1), 21–28 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Yoo, T.S., Lafortune, S.: A general architecture for decentralized supervisory control of discrete-event systems. Discrete Event Dynamic Systems, Theory & Applications 12(3), 335–377 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gal Katz
    • 1
  • Doron Peled
    • 1
  • Sven Schewe
    • 2
  1. 1.Department of Computer ScienceBar Ilan UniversityRamat GanIsrael
  2. 2.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK

Personalised recommendations