Functional Brain Imaging with M/EEG Using Structured Sparsity in Time-Frequency Dictionaries

  • Alexandre Gramfort
  • Daniel Strohmeier
  • Jens Haueisen
  • Matti Hamalainen
  • Matthieu Kowalski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6801)


Magnetoencephalography (MEG) and electroencephalography (EEG) allow functional brain imaging with high temporal resolution. While time-frequency analysis is often used in the field, it is not commonly employed in the context of the ill-posed inverse problem that maps the MEG and EEG measurements to the source space in the brain. In this work, we detail how convex structured sparsity can be exploited to achieve a principled and more accurate functional imaging approach. Importantly, time-frequency dictionaries can capture the non-stationary nature of brain signals and state-of-the-art convex optimization procedures based on proximal operators allow the derivation of a fast estimation algorithm. We compare the accuracy of our new method to recently proposed inverse solvers with help of simulations and analysis of real MEG data.


Root Mean Square Error Posterior Parietal Cortex Gabor Frame Functional Brain Image Proximity Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences 2(1), 183–202 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bolstad, A., Veen, B.V., Nowak, R.: Space-time event sparse penalization for magneto-/electroencephalography. NeuroImage 46(4), 1066–1081 (2009)CrossRefGoogle Scholar
  3. 3.
    Dale, A., Liu, A., Fischl, B., Buckner, R.: Dynamic statistical parametric neurotechnique mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26, 55–67 (2000)CrossRefGoogle Scholar
  4. 4.
    Daubechies, I.: Ten lectures on Wavelets. SIAM-CBMS Conferences Series (1992)Google Scholar
  5. 5.
    Durka, P.J., Matysiak, A., Montes, E.M., Valdés-Sosa, P., Blinowska, K.J.: Multichannel matching pursuit and EEG inverse solutions. Journal of Neuroscience Methods 148(1), 49–59 (2005)CrossRefGoogle Scholar
  6. 6.
    Forss, N., Hari, R., Salmelin, R., Ahonen, A., Hamalainen, M., Kajola, M., Knuutila, J., Simola, J.: Activation of the human posterior parietal cortex by median nerve stimulation. Exp. Brain Res. (99), 309–315 (1994)CrossRefGoogle Scholar
  7. 7.
    Friston, K., Harrison, L., Daunizeau, J., Kiebel, S., Phillips, C., Trujillo-Barreto, N., Henson, R., Flandin, G., Mattout, J.: Multiple sparse priors for the M/EEG inverse problem. Neuroimage 39(3), 1104–1120 (2008)CrossRefGoogle Scholar
  8. 8.
    Geva, A.B.: Spatio-temporal matching pursuit (SToMP) for multiple source estimation of evoked potentials. In: Electrical and Electronics Eng. pp. 113–116 (1996)Google Scholar
  9. 9.
    Gorodnitsky, I., George, J., Rao, B.: Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. Electroencephalography and Clinical Neurophysiology (January 1995)Google Scholar
  10. 10.
    Gramfort, A., Papadopoulo, T., Olivi, E., Clerc, M.: OpenMEEG: opensource software for quasistatic bioelectromagnetics. BioMed Eng. OnLine 9(1), 45 (2010)CrossRefGoogle Scholar
  11. 11.
    Hämäläinen, M., Ilmoniemi, R.: Interpreting magnetic fields of the brain: minimum norm estimates. Med. Biol. Eng. Comput. 32(1), 35–42 (1994)CrossRefGoogle Scholar
  12. 12.
    Haufe, S., Nikulin, V.V., Ziehe, A., Müller, K.R., Nolte, G.: Combining sparsity and rotational invariance in EEG/MEG source reconstruction. NeuroImage 42(2), 726–738 (2008)CrossRefGoogle Scholar
  13. 13.
    Haufe, S., Tomioka, R., Dickhaus, T., Sannelli, C., Blankertz, B., Nolte, G., Müller, K.R.: Large-scale EEG/MEG source localization with spatial flexibility. NeuroImage 54(2), 851–859 (2011)CrossRefGoogle Scholar
  14. 14.
    Jaros, U., Hilgenfeld, B., Lau, S., Curio, G., Haueisen, J.: Nonlinear interactions of high-frequency oscillations in the human somatosensory system. Clin. Neurophysiol. 119(11), 2647–2657 (2008)CrossRefGoogle Scholar
  15. 15.
    Jenatton, R., Mairal, J., Obozinski, G., Bach, F.: Proximal methods for hierarchical sparse coding. In: ICML (2010)Google Scholar
  16. 16.
    Lelic, D., Gratkowski, M., Valeriani, M., Arendt-Nielsen, L., Drewes, A.M.: Inverse modeling on decomposed electroencephalographic data: A way forward? Journal of Clinical Neurophysiology 26(4), 227–235 (2009)CrossRefGoogle Scholar
  17. 17.
    Matsuura, K., Okabe, Y.: Selective minimum-norm solution of the biomagnetic inverse problem. IEEE Trans. Biomed. Eng. 42(6), 608–615 (1995)CrossRefGoogle Scholar
  18. 18.
    Model, D., Zibulevsky, M.: Signal reconstruction in sensor arrays using sparse representations. Signal Processing 86(3), 624–638 (2006)CrossRefzbMATHGoogle Scholar
  19. 19.
    Nesterov, Y., Polyak, B.: Cubic regularization of newton’s method and its global performance. Mathematical Programming 108(1), 177–205 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ou, W., Hämaläinen, M., Golland, P.: A distributed spatio-temporal EEG/MEG inverse solver. NeuroImage 44(3), 932–946 (2009)CrossRefGoogle Scholar
  21. 21.
    Roth, V., Fischer, B.: The group-lasso for generalized linear models: uniqueness of solutions and efficient algorithms. In: ICML, pp. 848–855 (2008)Google Scholar
  22. 22.
    Soendergard, P., Torrésani, B., Balazs, P.: The linear time frequency toolbox. Tech. rep., Technical University of Denmark (2009)Google Scholar
  23. 23.
    Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Serie B 58(1), 267–288 (1996)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Trujillo-Barreto, N.J., Aubert-Vázquez, E., Penny, W.D.: Bayesian M/EEG source reconstruction with spatio-temporal priors. Neuroimage 39(1), 318–335 (2008)CrossRefGoogle Scholar
  25. 25.
    Valdés-Sosa, P.A., Vega-Hernández, M., Sánchez-Bornot, J.M., Martínez-Montes, E., Bobes, M.A.: EEG source imaging with spatio-temporal tomographic nonnegative independent component analysis. HBM 30(6), 1898–1910 (2009)CrossRefGoogle Scholar
  26. 26.
    Wipf, D., Nagarajan, S.: A unified Bayesian framework for MEG/EEG source imaging. Neuroimage 44(3), 947–966 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alexandre Gramfort
    • 1
    • 2
    • 3
  • Daniel Strohmeier
    • 4
  • Jens Haueisen
    • 4
    • 5
    • 6
  • Matti Hamalainen
    • 3
  • Matthieu Kowalski
    • 7
  1. 1.INRIA, Parietal teamSaclayFrance
  2. 2.LNAO/NeuroSpin, CEA SaclayGif-sur-Yvette CedexFrance
  3. 3.Martinos Center, MGH Dept. of RadiologyHarvard Medical SchoolBoston
  4. 4.Inst. of Biomedical Engineering and InformaticsIlmenau University of TechnologyIlmenauGermany
  5. 5.Biomagnetic Center, Dept. of NeurologyUniversity Hospital JenaJenaGermany
  6. 6.Dept. of Applied Medical SciencesKing Saud UniversityRiyadhSaudi Arabia
  7. 7.Laboratoire des Signaux et Systèmes (L2S)SUPELECGif-sur-Yvette CedexFrance

Personalised recommendations