Identifying Nuclear Phenotypes Using Semi-supervised Metric Learning

  • Shantanu Singh
  • Firdaus Janoos
  • Thierry Pécot
  • Enrico Caserta
  • Gustavo Leone
  • Jens Rittscher
  • Raghu Machiraju
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6801)

Abstract

In systems–based approaches for studying processes such as cancer and development, identifying and characterizing individual cells within a tissue is the first step towards understanding the large–scale effects that emerge from the interactions between cells. To this end, nuclear morphology is an important phenotype to characterize the physiological and differentiated state of a cell. This study focuses on using nuclear morphology to identify cellular phenotypes in thick tissue sections imaged using 3D fluorescence microscopy. The limited label information, heterogeneous feature set describing a nucleus, and existence of sub-populations within cell-types makes this a difficult learning problem. To address these issues, a technique is presented to learn a distance metric from labeled data which is locally adaptive to account for heterogeneity in the data. Additionally, a label propagation technique is used to improve the quality of the learned metric by expanding the training set using unlabeled data. Results are presented on images of tumor stroma in breast cancer, where the framework is used to identify fibroblasts, macrophages and endothelial cells – three major stromal cells involved in carcinogenesis.

Keywords

Nuclear Morphometry Metric Learning Microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bissell, M.J., Radisky, D.: Putting tumours in context. Nature Reviews. Cancer 1(1), 46–54 (2001)CrossRefGoogle Scholar
  2. 2.
    Boland, M.V., Markey, M.K., Murphy, R.F.: Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. Cytometry 33(3), 366–375 (1998)CrossRefGoogle Scholar
  3. 3.
    Brechbhler, C., Gerig, G., Kbler, O.: Parametrization of closed surfaces for 3-d shape description. Computer Vision and Image Understanding 61(2), 154–170 (1995)CrossRefGoogle Scholar
  4. 4.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. The MIT Press, New York (2001)MATHGoogle Scholar
  5. 5.
    Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric learning. In: Proceedings of the 24th International Conference on Machine Learning, ICML 2007, pp. 209–216 (2007)Google Scholar
  6. 6.
    Eaton, M.L.: Multivariate statistics: a vector space approach. Lecture notes-monograph series, vol. 53. Institute of Mathematical Statistics (1983)Google Scholar
  7. 7.
    Gladilin, E., Goetze, S., Mateos-Langerak, J., Van Driel, R., Eils, R., Rohr, K.: Shape normalization of 3D cell nuclei using elastic spherical mapping. Journal of Microscopy 231(Pt 1), 105–114 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Goldberger, J., Roweis, S., Hinton, G.: Neighbourhood components analysis. In: Advances in Neural Information Processing Systems (2004)Google Scholar
  9. 9.
    Kulis, B., Sustik, M., Dhillon, I.: Learning low-rank kernel matrices. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 505–512. ACM, New York (2006)Google Scholar
  10. 10.
    Lichtman, J.W.: Fluorescence microscopy. Nature Methods 2(12) (2005)Google Scholar
  11. 11.
    Lodish, H., Berk, A., Kaiser, C.A., Krieger, M., Scott, M.P., Bretscher, A., Ploegh, H., Matsudaira, P.: Molecular Cell Biology, 6th edn. W.H. Freeman, New York (2007)Google Scholar
  12. 12.
    Megason, S.G., Fraser, S.E.: Imaging in Systems biology. Cell 130(5), 784–795 (2007)CrossRefGoogle Scholar
  13. 13.
    Rohde, G.K., Ribeiro, A.J.S., Dahl, K.N., Murphy, R.F.: Deformation-based nuclear morphometry: capturing nuclear shape variation in HeLa cells. Cytometry. Part A: the Journal of the International Society for Analytical Cytology 73(4), 341–350 (2008)CrossRefGoogle Scholar
  14. 14.
    Shaner, N.C., Steinbach, P.A., Tsien, R.Y.: A guide to choosing fluorescent proteins. Nature Methods 2(12), 905–909 (2005)CrossRefGoogle Scholar
  15. 15.
    Singh, S., Raman, S., Caserta, E., Leone, G., Ostrowski, M., Rittscher, J., Machiraju, R.: Analysis of Spatial Variation of Nuclear Morphology in Tissue Microenvironments. In: 2010 7th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE, Los Alamitos (2010)Google Scholar
  16. 16.
    Slack, M.D., Martinez, E.D., Wu, L.F., Altschuler, S.J.: Characterizing heterogeneous cellular responses to perturbations. Proceedings of the National Academy of Sciences of the United States of America 105(49), 19306–19311 (2008)CrossRefGoogle Scholar
  17. 17.
    Styner, M., Oguz, I., Xu, S., Levitt, J.J., Shenton, M.E., Gerig, G.: Framework for the Statistical Shape Analysis of Brain Structures using SPHARM-PDM. Insight Journal, 1–20 (2006)Google Scholar
  18. 18.
    Trimboli, A.J., Cantemir-Stone, C.Z., Li, F., Wallace, J.A., Merchant, A., Creasap, N., Thompson, J.C., Caserta, E., Wang, H., Chong, J.L., Naidu, S., Wei, G., Sharma, S.M., Stephens, J.A., Fernandez, S.A., Gurcan, M.N., Weinstein, M.B., Barsky, S.H., Yee, L., Rosol, T.J., Stromberg, P.C., Robinson, M.L., Pepin, F., Hallett, M., Park, M., Ostrowski, M.C., Leone, G.: Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature 461(7267), 1084–1091 (2009)CrossRefGoogle Scholar
  19. 19.
    Van Dongen, S.: A cluster algorithm for graphs (2000)Google Scholar
  20. 20.
    Weinberger, K.Q., Saul, L.K.: Distance Metric Learning for Large Margin Nearest Neighbor Classification. Journal of Machine Learning Research 10, 207–244 (2009)MATHGoogle Scholar
  21. 21.
    Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.: Distance metric learning, with application to clustering with side-information. In: Advances in Neural Information Processing Systems (2003)Google Scholar
  22. 22.
    Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using gaussian fields and harmonic functions. In: ICML, vol. 20, p. 912 (2003)Google Scholar
  23. 23.
    Zink, D., Fischer, A.H., Nickerson, J.A.: Nuclear structure in cancer cells. Nature reviews. Cancer 4(9), 677–687 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Shantanu Singh
    • 1
  • Firdaus Janoos
    • 1
  • Thierry Pécot
    • 1
  • Enrico Caserta
    • 2
  • Gustavo Leone
    • 2
  • Jens Rittscher
    • 3
  • Raghu Machiraju
    • 1
  1. 1.Dept. of Computer Science and Engg.The Ohio State UniversityU.S.A.
  2. 2.Dept. of Molecular GeneticsThe Ohio State UniversityU.S.A.
  3. 3.General Electric Global Research CenterU.S.A.

Personalised recommendations