Segmentation of Brain Images Using Adaptive Atlases with Application to Ventriculomegaly

  • Navid Shiee
  • Pierre-Louis Bazin
  • Jennifer L. Cuzzocreo
  • Ari Blitz
  • Dzung L. Pham
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6801)


Segmentation of brain images often requires a statistical atlas for providing prior information about the spatial position of different structures. A major limitation of atlas-based segmentation algorithms is their deficiency in analyzing brains that have a large deviation from the population used in the construction of the atlas. We present an expectation-maximization framework based on a Dirichlet distribution to adapt a statistical atlas to the underlying subject. Our model combines anatomical priors with the subject’s own anatomy, resulting in a subject specific atlas which we call an “adaptive atlas”. The generation of this adaptive atlas does not require the subject to have an anatomy similar to that of the atlas population, nor does it rely on the availability of an ensemble of similar images. The proposed method shows a significant improvement over current segmentation approaches when applied to subjects with severe ventriculomegaly, where the anatomy deviates significantly from the atlas population. Furthermore, high levels of accuracy are maintained when the method is applied to subjects with healthy anatomy.


Gaussian Mixture Model Segmentation Algorithm Markov Random Field Dirichlet Distribution Deformable Registration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashburner, J., Friston, K.: Multimodal image coregistration and partitioning–a unified framework. NeuroImage 6(3), 209–217 (1997)CrossRefGoogle Scholar
  2. 2.
    Bazin, P.-L., Pham, D.L.: Homeomorphic brain image segmentation with topological and statistical atlases. Med. Image Anal. 12(5), 616–625 (2008)CrossRefGoogle Scholar
  3. 3.
    Bhatia, K.K., Aljabar, P., Boardman, J.P., Srinivasan, L., Murgasova, M., Counsell, S.J., Rutherford, M.A., Hajnal, J.V., Edwards, A.D., Rueckert, D.: Groupwise combined segmentation and registration for atlas construction. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 532–540. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Clarke, M.J., Meyer, F.B.: The history of mathematical modeling in hydrocephalus. Neurosurg Focus 22(4), E3 (2007)CrossRefGoogle Scholar
  5. 5.
    Collins, D.L., Zijdenbos, A.P., Kollokian, V., Sled, J.G., Kabani, N.J., Holmes, C.J., Evans, A.C.: Design and construction of a realistic digital brain phantom. IEEE Trans. Med. Imaging 17(3), 463–468 (1998)CrossRefGoogle Scholar
  6. 6.
    Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc. 39(1), 1–38 (1977)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Dice, L.: Measures of the amount of ecologic association between species. Ecology 25(3), 297–302 (1945)CrossRefGoogle Scholar
  8. 8.
    Fischl, B., Salat, D.H., van der Kouwe, A.J.W., Makris, N., Ségonne, F., Quinn, B.T., Dale, A.M.: Sequence-independent segmentation of magnetic resonance images. NeuroImage 23(suppl. 1), S69–S84 (2004)CrossRefGoogle Scholar
  9. 9.
    Kabani, N., McDonald, D., Holmes, C.J., Evans, A.C.: 3D anatomical atlas of the human brain. Proc of HBM, NeuroImage 7(4), S717 (1998)Google Scholar
  10. 10.
    Liu, C.Y., Iglesias, J.E., Toga, A., Tu, Z.: Fusing adaptive atlas and informative features for robust 3D brain image segmentation. In: Proc of ISBI. pp. 848–851 (2010)Google Scholar
  11. 11.
    Maddah, M., Zollei, L., Grimson, W., Wells, W.: Modeling of anatomical information in clustering of white matter fiber trajectories using Dirichlet distribution. In: Proc of MMBIA, pp. 1–7 (2008)Google Scholar
  12. 12.
    Nikou, C., Galatsanos, N.P., Likas, A.C.: A class-adaptive spatially variant mixture model for image segmentation. IEEE Trans. Image Process. 16(4), 1121–1130 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Nikou, C., Likas, A.C., Galatsanos, N.P.: A bayesian framework for image segmentation with spatially varying mixtures. IEEE Trans. Image Process. 19(9), 2278–2289 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Nychka, D.: Some properties of adding a smoothing step to the EM algorithm. Stat. Probabil. Lett. 9(2), 187–193 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Pham, D.L., Prince, J.L.: Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans. Med. Imaging 18(9), 737–752 (1999)CrossRefGoogle Scholar
  16. 16.
    Pham, D., Bazin, P.L.: Unsupervised tissue classification. In: Bankman, I. (ed.) Handbook of Medical Image Processing and Analysis, 2nd edn., pp. 209–221. Elsevier, Amsterdam (2008)Google Scholar
  17. 17.
    Pohl, K.M., Bouix, S., Nakamura, M., Rohlfing, T., McCarley, R.W., Kikinis, R., Grimson, W.E.L., Shenton, M.E., Wells, W.M.: A hierarchical algorithm for MR brain image parcellation. IEEE Trans. Med. Imaging 26(9), 1201–1212 (2007)CrossRefGoogle Scholar
  18. 18.
    Preul, C., Hübsch, T., Lindner, D., Tittgemeyer, M.: Assessment of ventricular reconfiguration after third ventriculostomy: what does shape analysis provide in addition to volumetry? AJNR Am. J. Neuroradiol. 27(3), 689–693 (2006)Google Scholar
  19. 19.
    Riklin-Raviv, T., Van Leemput, K., Menze, B.H., Wells, W.M., Golland, P.: Segmentation of image ensembles via latent atlases. Med. Image Anal. 14(5), 654–665 (2010)CrossRefGoogle Scholar
  20. 20.
    Sanjay-Gopal, S., Hebert, T.J.: Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm. IEEE Trans. Image Process. 7(7), 1014–1028 (1998)CrossRefGoogle Scholar
  21. 21.
    Shen, D., Davatzikos, C.: HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Trans. Med. Imaging 21(11), 1421–1439 (2002)CrossRefGoogle Scholar
  22. 22.
    Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based tissue classification of MR images of the brain. IEEE Trans. Med. Imaging 18(10), 897–908 (1999)CrossRefGoogle Scholar
  23. 23.
    Worth, A.: Internet brain segmentation repository (1996),

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Navid Shiee
    • 1
  • Pierre-Louis Bazin
    • 1
    • 2
  • Jennifer L. Cuzzocreo
    • 1
  • Ari Blitz
    • 2
  • Dzung L. Pham
    • 1
    • 2
    • 3
  1. 1.The Laboratory of Medical Image ComputingJohns Hopkins UniversityUSA
  2. 2.Department of Radiology and Radiological ScienceJohns Hopkins UniversityUSA
  3. 3.Center for Neuroscience and Regenerative MedicineHenry M. Jackson FoundationUSA

Personalised recommendations