Mixed Multiscale Methods for Heterogeneous Elliptic Problems

  • Todd Arbogast
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 83)


We consider a second order elliptic problem written in mixed form, i.e., as a system of two first order equations. Such problems arise in many contexts, including flow in porous media. The coefficient in the elliptic problem (the permeability of the porous medium) is assumed to be spatially heterogeneous. The emphasis here is on accurate approximation of the solution with respect to the scale of variation in this coefficient. Homogenization and upscaling techniques alone are generally inadequate for this problem. As an alternative, multiscale numerical methods have been developed. They can be viewed in one of three equivalent frameworks: as a Galerkin or finite element method with nonpolynomial basis functions, as a variational multiscale method with standard finite elements, or as a domain decomposition method with restricted degrees of freedom on the interfaces. We treat each case, and discuss the advantages of the approach for devising effective local multiscale methods. Included is recent work on methods that incorporate information from homogenization theory and effective domain decomposition methods.


Elliptic Problem Domain Decomposition Coarse Scale Multiscale Method Homogenization Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the U.S. National Science Foundation and the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114.


  1. 1.
    J. E. Aarnes and B.-O. Heimsund. Multiscale discontinuous Galerkin methods for elliptic problems with multiple scales. In Timothy J. Barth et al., editors, Multiscale Methods in Science and Engineering, volume 44 of Lecture Notes in Computational Science and Engineering, pages 1–20. Springer Berlin Heidelberg, 2005.Google Scholar
  2. 2.
    J. E. Aarnes, Y. Efendiev, and L. Jiang. Mixed multiscale finite element methods using limited global information. Multiscale Model. Simul., 7(2):655–676, 2008.CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    J. E. Aarnes. On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation. Multiscale Model. Simul., 2(3):421–439, 2004.CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    J. E. Aarnes, S. Krogstad, and K.-A. Lie. A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform coarse grids. Multiscale Model. Simul., 5:337–363, 2006.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    T. Arbogast. Numerical subgrid upscaling of two-phase flow in porous media. In Z. Chen, R. E. Ewing, and Z.-C. Shi, editors, Numerical treatment of multiphase flows in porous media, volume 552 of Lecture Notes in Physics, pages 35–49. Springer, Berlin, 2000.Google Scholar
  6. 6.
    T. Arbogast. Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems. SIAM J. Numer. Anal., 42:576–598, 2004.CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    T. Arbogast. Homogenization-based mixed multiscale finite elements for problems with anisotropy. Multiscale Model. Simul., 9(2):624–653, 2011.CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    T. Arbogast and K. J. Boyd. Subgrid upscaling and mixed multiscale finite elements. SIAM J. Numer. Anal., 44(3):1150–1171, 2006.CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    T. Arbogast, L. C. Cowsar, M. F. Wheeler, and I. Yotov. Mixed finite element methods on non-matching multiblock grids. SIAM J. Numer. Anal., 37:1295–1315, 2000.CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    T. Arbogast, S. E. Minkoff, and P. T. Keenan. An operator-based approach to upscaling the pressure equation. In V. N. Burganos et al., editors, Computational Methods in Water Resources XII, Vol. 1: Computational Methods in Contamination and Remediation of Water Resources, pages 405–412, Southampton, U.K., 1998. Computational Mechanics Publications.Google Scholar
  11. 11.
    T. Arbogast, G. Pencheva, M. F. Wheeler, and I. Yotov. A multiscale mortar mixed finite element method. Multiscale Model. Simul., 6(1):319–346, 2007.CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    T. Arbogast and H. Xiao. A multiscale mortar mixed space based on homogenization for heterogeneous elliptic problems. Submitted, 2011.Google Scholar
  13. 13.
    I. Babuška. The finite element method with Lagrangian multipliers. Numer. Math., 20: 179–192, 1973.CrossRefzbMATHGoogle Scholar
  14. 14.
    I. Babuška, G. Caloz, and J. E. Osborn. Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal., 31:945–981, 1994.CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    I. Babuška and R. Lipton. Optimal local approximation spaces for generalized finite element methods with application to multiscale problems. Technical Report 10–12, Institute for Computational Engineering and Sciences, Univ. of Texas, Austin, Texas, USA, Mar. 2010.Google Scholar
  16. 16.
    I. Babuška and J. E. Osborn. Generalized finite element methods: their performance and their relation to mixed methods. SIAM J. Numer. Anal., 20:510–536, 1983.CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    J. Bear. Dynamics of Fluids in Porous Media. Dover, New York, 1972.zbMATHGoogle Scholar
  18. 18.
    J. Bear and A. H.-D. Cheng. Modeling Groundwater Flow and Contaminant Transport. Springer, New York, 2010.CrossRefzbMATHGoogle Scholar
  19. 19.
    A. Bensoussan, J. L. Lions, and G. Papanicolaou. Asymptotic Analysis for Periodic Structure. North-Holland, Amsterdam, 1978.Google Scholar
  20. 20.
    C. Bernardi, Y. Maday, and A. T. Patera. A new nonconforming approach to domain decomposition: The mortar element method. In H. Brezis and J. L. Lions, editors, Nonlinear partial differential equations and their applications. Longman Scientific & Technical, UK, 1994.Google Scholar
  21. 21.
    S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York, 1994.zbMATHGoogle Scholar
  22. 22.
    F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. RAIRO, 8:129–151, 1974.MathSciNetGoogle Scholar
  23. 23.
    F. Brezzi. Interacting with the subgrid world. In Numerical Analysis, 1999, pages 69–82. Chapman and Hall, 2000.Google Scholar
  24. 24.
    F. Brezzi, J. Douglas, Jr., R. Duràn, and M. Fortin. Mixed finite elements for second order elliptic problems in three variables. Numer. Math., 51:237–250, 1987.CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    F. Brezzi, J. Douglas, Jr., and L. D. Marini. Two families of mixed elements for second order elliptic problems. Numer. Math., 47:217–235, 1985.CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    F. Brezzi and M. Fortin. Mixed and hybrid finite element methods. Springer-Verlag, New York, 1991.CrossRefzbMATHGoogle Scholar
  27. 27.
    Y. Chen and L. J. Durlofsky. Adaptive local-global upscaling for general flow scenarios in heterogeneous formations. Transp. Por. Med., 62:157–185, 2006.CrossRefMathSciNetGoogle Scholar
  28. 28.
    Z. Chen and T. Y. Hou. A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comp., 72:541–576, 2003.CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Ph. G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.Google Scholar
  30. 32.
    Weinan E and B. Engquist. The heterogeneous multiscale methods. Commun. Math. Sci., 1:87–132, 2003.Google Scholar
  31. 33.
    Y. Efendiev, J. Galvis, and X.-H. Wu. Multiscale finite element methods for high-contrast problems using local spectral basis functions. J. Comput. Phys., 230(4):937–955, 2011.CrossRefzbMATHMathSciNetGoogle Scholar
  32. 34.
    Y. Efendiev, V. Ginting, T. Y. Hou, and R. E. Ewing. Accurate multiscale finite element methods for two-phase flow simulations. J. Comput. Phys., 220(1):155–174, 2006.CrossRefzbMATHMathSciNetGoogle Scholar
  33. 35.
    Y. R. Efendiev, T. Y. Hou, and X.-H. Wu. Convergence of a nonconforming multiscale finite element method. SIAM J. Numer. Anal., 37:888–910, 2000.CrossRefzbMATHMathSciNetGoogle Scholar
  34. 36.
    G. B. Folland. Introduction to Partial Differential Equations. Princeton, 1976.Google Scholar
  35. 37.
    B. Ganis and I. Yotov. Implementation of a mortar mixed finite element method using a multiscale flux basis. Comput. Methods Appl. Mech. Engrg., 198:3989–3998, 2009.CrossRefMathSciNetGoogle Scholar
  36. 38.
    D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin, 1983.zbMATHGoogle Scholar
  37. 39.
    V. Ginting. Analysis of two-scale finite volume element method for elliptic problem. J. Numer. Math., 12(2):119–141, 2004.CrossRefzbMATHMathSciNetGoogle Scholar
  38. 40.
    R. Glowinski and M. F. Wheeler. Domain decomposition and mixed finite element methods for elliptic problems. In R. Glowinski et al., editors, First International Symposium on Domain Decomposition Methods for Partial Differential Equations, pages 144–172. SIAM, Philadelphia, 1988.Google Scholar
  39. 41.
    I. G. Graham and R. Scheichl. Robust domain decomposition algorithms for multiscale PDEs. Numer. Meth. Partial Diff. Eqns., 23(4):859–878, 2007.CrossRefzbMATHMathSciNetGoogle Scholar
  40. 42.
    P. Grisvard. Elliptic Problems in Nonsmooth Domains. Pitman, Boston, 1985.zbMATHGoogle Scholar
  41. 43.
    M. A. Hesse, B. T. Mallison, and H. A. Tchelepi. Compact multiscale finite volume method for heterogeneous anisotropic elliptic equations. Multiscale Model. Simul., 7(2):934–962, 2008.CrossRefzbMATHMathSciNetGoogle Scholar
  42. 44.
    U. L. Hetmaniuk and R. B. Lehoucq. A special finite element methods based on component mode synthesis techniques. ESAIM: Math. Modelling and Numer. Anal., 2010.Google Scholar
  43. 45.
    U. Hornung, editor. Homogenization and Porous Media. Interdisciplinary Applied Mathematics Series. Springer-Verlag, New York, 1997.zbMATHGoogle Scholar
  44. 46.
    T. Y. Hou and X. H. Wu. A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys., 134:169–189, 1997.CrossRefzbMATHMathSciNetGoogle Scholar
  45. 47.
    T. Y. Hou, X.-H. Wu, and Z. Cai. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comp., 68:913–943, 1999.CrossRefzbMATHMathSciNetGoogle Scholar
  46. 48.
    T. J. R. Hughes. Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Engrg., 127:387–401, 1995.CrossRefzbMATHMathSciNetGoogle Scholar
  47. 49.
    T. J. R. Hughes, G. R. Feijóo, L. Mazzei, and J.-B. Quincy. The variational multiscale method – a paradigm for computational mechanics. Comput. Methods Appl. Mech. Engrg., 166:3–24, 1998.CrossRefzbMATHMathSciNetGoogle Scholar
  48. 50.
    P. Jenny, S. H. Lee, and H. A. Tchelepi. Multi-scale finite-volume method for elliptic problems in subsurface flow simulation. J. Comp. Phys., 187:47–67, 2003.CrossRefzbMATHGoogle Scholar
  49. 51.
    V. V. Jikov, S. M. Kozlov, and O. A. Oleinik. Homogenization of Differential Operators and Integral Functions. Springer-Verlag, New York, 1994.Google Scholar
  50. 52.
    M. G. Larson and A. Målqvis. Adaptive variational multiscale methods based on a posteriori error estimation: energy norm estimates for elliptic problems. Comput. Methods Appl. Mech. Engrg., 196(21–24):2313–2324, 2007.CrossRefzbMATHMathSciNetGoogle Scholar
  51. 53.
    J. Van Lent, R. Scheichl, and I. G. Graham. Energy minimizing coarse spaces for two-level Schwarz methods for multiscale PDEs. Numer. Lin. Alg. with Applic., 16(10):775–799, 2009.CrossRefzbMATHGoogle Scholar
  52. 54.
    S. P. MacLachlan and J. D. Moulton. Multilevel upscaling through variational coarsening. Water Resour. Res., 42, 2006.Google Scholar
  53. 55.
    J. D. Moulton, Jr. J. E. Dendy, and J. M. Hyman. The black box multigrid numerical homogenization algorithm. J. Comput. Phys., 142(1):80–108, 1998.CrossRefzbMATHMathSciNetGoogle Scholar
  54. 56.
    J. Nolen, G. Papanicolaou, and O. Pironneau. A framework for adaptive multiscale methods for elliptic problems. Multiscale Model. Simul., 7(1):171–196, 2008.CrossRefzbMATHMathSciNetGoogle Scholar
  55. 57.
    J. M. Nordbotten. Adaptive variational multiscale methods for multiphase flow in porous media. Multiscale Model. Simul., 7(3):1455–1473, 2009.CrossRefzbMATHMathSciNetGoogle Scholar
  56. 58.
    G. Pencheva, M. Vohralik, M. F. Wheeler, and T. Wildey. Robust a posteriori error control and adaptivity for multiscale, multinumerics, and mortar coupling. Submitted, 2010.Google Scholar
  57. 59.
    J. M. Rath. Darcy flow, multigrid, and upscaling. In et al. W. W. Hager, editor, Multiscale Optimization Methods and Applications, volume 82 of Nonconvex Optimization and its Applications, pages 337–366. Springer, New York, 2006.Google Scholar
  58. 60.
    J. M. Rath. Multiscale Basis Optimization for Darcy Flow. PhD thesis, Univ. of Texas, Austin, Texas, May 2007.Google Scholar
  59. 61.
    R. A. Raviart and J. M. Thomas. A mixed finite element method for 2nd order elliptic problems. In I. Galligani and E. Magenes, editors, Mathematical Aspects of Finite Element Methods, number 606 in Lecture Notes in Math., pages 292–315. Springer-Verlag, New York, 1977.Google Scholar
  60. 62.
    E. Sanchez-Palencia. Non-homogeneous Media and Vibration Theory. Number 127 in Lecture Notes in Physics. Springer-Verlag, New York, 1980.Google Scholar
  61. 63.
    H. A. Schwarz. Gesammelte mathematische adhandlungen. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 15:272–286, 1870.Google Scholar
  62. 64.
    T. Strouboulis, K. Copps, and I. Babuška. The generalized finite element method. Comput. Methods Appl. Mech. Engrg., 190:4081–4193, 2001.CrossRefzbMATHMathSciNetGoogle Scholar
  63. 65.
    Jinchao Xu and L. Zikatanov. On an energy minimizing basis for algebraic multigrid methods. Comput. Vis. Sci., 7(3–4):121–127, 2004.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute for Computational Engineering and SciencesThe University of Texas at AustinAustinUSA
  2. 2.Mathematics DepartmentThe University of Texas at AustinAustinUSA

Personalised recommendations