Fast Algorithms for High Frequency Wave Propagation

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 83)


High frequency wave propagation is computationally challenging due to the very large number of unknowns that are needed in direct numerical approximations. We will present new fast algorithms for the solution of the linear systems, which follow from discretization of the Helmholtz equation and its related integral equation formulation. For the Helmholtz equation we present a new type of preconditioner, which, together with the GMRES iterative method, results in a near optimal computational complexity. The cost of the preconditioner scales essentially linearly with the number of unknowns and the number of iterations is independent of frequency. In the integral equation case, a directional fast multilevel technique also results in a near optimal computational complexity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



B. E. is partially supported by the NSF grants DMS-0714612 and DMS-1016577. L. Y. is partially supported by the NSF CAREER award DMS-0846501, the NSF grant DMS-1016577, and an Alfred P. Sloan Fellowship. The authors thank the reviewer for detailed comments and suggestions.


  1. 1.
    A. Averbuch, E. Braverman, R. Coifman, M. Israeli, and A. Sidi. Efficient computation of oscillatory integrals via adaptive multiscale local Fourier bases. Appl. Comput. Harmon. Anal., 9(1):19–53, 2000.CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    A. Bayliss, C. I. Goldstein, and E. Turkel. An iterative method for the Helmholtz equation. Journal of Computational Physics, 49(3):443–457, 1983.CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    J.-D. Benamou and B. Desprès. A domain decomposition method for the Helmholtz equation and related optimal control problems. J. Comput. Phys., 136(1):68–82, 1997.CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    M. Benzi, J. C. Haws, and M. Tu̇ma. Preconditioning highly indefinite and nonsymmetric matrices. SIAM J. Sci. Comput., 22(4):1333–1353 (electronic), 2000.Google Scholar
  5. 5.
    J.-P. Berenger. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys., 114(2):185–200, 1994.CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    E. Bleszynski, M. Bleszynski, and T. Jaroszewicz. AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems. Radio Science, 31:1225–1252, 1996.CrossRefGoogle Scholar
  7. 7.
    S. Börm, L. Grasedyck, and W. Hackbusch. Hierarchical matrices, 2006. Max-Planck-Institute Lecture Notes.Google Scholar
  8. 8.
    B. Bradie, R. Coifman, and A. Grossmann. Fast numerical computations of oscillatory integrals related to acoustic scattering. I. Appl. Comput. Harmon. Anal., 1(1):94–99, 1993.Google Scholar
  9. 9.
    A. Brandt and I. Livshits. Wave-ray multigrid method for standing wave equations. Electron. Trans. Numer. Anal., 6(Dec.):162–181 (electronic), 1997. Special issue on multilevel methods (Copper Mountain, CO, 1997).Google Scholar
  10. 10.
    O.P. Bruno and L. A. Kunyansky. A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications. J. Comput. Phys., 169(1):80–110, 2001.CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    F. X. Canning. Sparse approximation for solving integral equations with oscillatory kernels. SIAM J. Sci. Statist. Comput., 13(1):71–87, 1992.CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    H. Cheng, W. Crutchfield, Z. Gimbutas, L. Greengard, J. Huang, V. Rokhlin, N. Yarvin, and J. Zhao. Remarks on the implementation of the wideband FMM for the Helmholtz equation in two dimensions. In Inverse problems, multi-scale analysis and effective medium theory, volume 408 of Contemp. Math., pages 99–110. Amer. Math. Soc., Providence, RI, 2006.Google Scholar
  13. 13.
    H. Cheng, W. Y. Crutchfield, Z. Gimbutas, L. F. Greengard, J. F. Ethridge, J. Huang, V. Rokhlin, N. Yarvin, and J. Zhao. A wideband fast multipole method for the Helmholtz equation in three dimensions. J. Comput. Phys., 216(1):300–325, 2006.CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    W. Chew, E. Michielssen, J. M. Song, and J. M. Jin, editors. Fast and efficient algorithms in computational electromagnetics. Artech House, Inc., Norwood, MA, USA, 2001.Google Scholar
  15. 15.
    W. C. Chew and W. H. Weedon. A 3-d perfectly matched medium from modified Maxwell’s equations with stretched coordinates. Microwave Opt. Tech. Lett, 7:599–604, 1994.CrossRefGoogle Scholar
  16. 16.
    D. Colton and R. Kress. Inverse acoustic and electromagnetic scattering theory, volume 93 of Applied Mathematical Sciences. Springer-Verlag, Berlin, second edition, 1998.Google Scholar
  17. 17.
    S. D. Conte. Elementary numerical analysis: An algorithmic approach. McGraw-Hill Book Co., New York, 1965.MATHGoogle Scholar
  18. 18.
    E. Darve. The fast multipole method: numerical implementation. J. Comput. Phys., 160(1): 195–240, 2000.CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    L. Demanet and L. Ying. Scattering in flatland: efficient representations via wave atoms. Found. Comput. Math., 10(5):569–613, 2010.CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    H. Deng and H. Ling. Fast solution of electromagnetic integral equations using adaptive wavelet packet transform. Antennas and Propagation, IEEE Transactions on, 47(4):674–682, Apr 1999.CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    H. Deng and H. Ling. On a class of predefined wavelet packet bases for efficient representation of electromagnetic integral equations. Antennas and Propagation, IEEE Transactions on, 47(12):1772–1779, Dec 1999.CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    B. Després. Domain decomposition method and the Helmholtz problem. In Mathematical and numerical aspects of wave propagation phenomena (Strasbourg, 1991), pages 44–52. SIAM, Philadelphia, PA, 1991.Google Scholar
  23. 23.
    J. Duff and J. Reid. The multifrontal solution of indefinite sparse symmetric linear equations. ACM Trans. Math. Software, 9:302–325, 1983.CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    H. C. Elman, O. G. Ernst, and D. P. O’Leary. A multigrid method enhanced by Krylov subspace iteration for discrete Helmholtz equations. SIAM J. Sci. Comput., 23(4):1291–1315 (electronic), 2001.Google Scholar
  25. 25.
    B. Engquist and O. Runborg. Computational high frequency wave propagation. Acta Numer., 12:181–266, 2003.CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    B. Engquist and L. Ying. Fast directional multilevel algorithms for oscillatory kernels. SIAM J. Sci. Comput., 29(4):1710–1737 (electronic), 2007.Google Scholar
  27. 27.
    B. Engquist and L. Ying. A fast directional algorithm for high frequency acoustic scattering in two dimensions. Commun. Math. Sci., 7(2):327–345, 2009.MATHMathSciNetGoogle Scholar
  28. 28.
    B. Engquist and L. Ying. Sweeping preconditioner for the Helmholtz equation: hierarchical matrix representation. Comm. Pure Appl. Math., 64(5):697–735, May 2011.CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    B. Engquist and L. Ying. Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers. Preprint, 2010.Google Scholar
  30. 30.
    Y. A. Erlangga. Advances in iterative methods and preconditioners for the Helmholtz equation. Arch. Comput. Methods Eng., 15(1):37–66, 2008.CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Y. A. Erlangga, C. W. Oosterlee, and C. Vuik. A novel multigrid based preconditioner for heterogeneous Helmholtz problems. SIAM J. Sci. Comput., 27(4):1471–1492 (electronic), 2006.Google Scholar
  32. 32.
    Y. A. Erlangga, C. Vuik, and C. W. Oosterlee. On a class of preconditioners for solving the Helmholtz equation. Appl. Numer. Math., 50(3-4):409–425, 2004.CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    O. G. Ernst and M. J. Gander. Why it is difficult to solve Helmholtz problems with classical iterative methods. In this volume, page 325, Springer, 2011.Google Scholar
  34. 34.
    J. Fish and Y. Qu. Global-basis two-level method for indefinite systems. I. Convergence studies. Internat. J. Numer. Methods Engrg., 49(3):439–460, 2000.Google Scholar
  35. 35.
    M. J. Gander and F. Nataf. An incomplete LU preconditioner for problems in acoustics. J. Comput. Acoust., 13(3):455–476, 2005.CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    J. George. Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal., 10:345–363, 1973.CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    W. Golik. Wavelet packets for fast solution of electromagnetic integral equations. Antennas and Propagation, IEEE Transactions on, 46(5):618–624, May 1998.CrossRefGoogle Scholar
  38. 38.
    L. Grasedyck and W. Hackbusch. Construction and arithmetics of -matrices. Computing, 70(4):295–334, 2003.CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput. Phys., 73(2):325–348, 1987.CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    W. Hackbusch. A sparse matrix arithmetic based on -matrices. Part I: Introduction to -matrices. Computing, 62:89–108, 1999.Google Scholar
  41. 41.
    D. Huybrechs and S. Vandewalle. A two-dimensional wavelet-packet transform for matrix compression of integral equations with highly oscillatory kernel. J. Comput. Appl. Math., 197(1):218–232, 2006.CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    S. Johnson. Notes on perfectly matched layers. Technical Report, Massachusetts Institute of Technology, 2010.Google Scholar
  43. 43.
    H.-O. Kreiss and J. Oliger. Comparison of accurate methods for the integration of hyperbolic equations. Tellus, 24:199–215, 1972.CrossRefMathSciNetGoogle Scholar
  44. 44.
    A. Laird and M. Giles. Preconditioned iterative solution of the 2D Helmholtz equation. Technical Report, NA 02-12, Computing Lab, Oxford University, 2002.Google Scholar
  45. 45.
    B. Lee, T. A. Manteuffel, S. F. McCormick, and J. Ruge. First-order system least-squares for the Helmholtz equation. SIAM J. Sci. Comput., 21(5):1927–1949 (electronic), 2000. Iterative methods for solving systems of algebraic equations (Copper Mountain, CO, 1998).Google Scholar
  46. 46.
    J. Liu. The multifrontal method for sparse matrix solution: Theory and practice. SIAM Rev., 34:82–109, 1992.CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    I. Livshits and A. Brandt. Accuracy properties of the wave-ray multigrid algorithm for Helmholtz equations. SIAM J. Sci. Comput., 28(4):1228–1251 (electronic), 2006.Google Scholar
  48. 48.
    P.-G. Martinsson. A fast direct solver for a class of elliptic partial differential equations. Journal of Scientific Computing, 38:316–330, 2009.CrossRefMATHMathSciNetGoogle Scholar
  49. 49.
    E. Michielssen and A. Boag. A multilevel matrix decomposition algorithm for analyzing scattering from large structures. IEEE Transactions on Antennas and Propagation, 44(8):1086–1093, 1996.CrossRefGoogle Scholar
  50. 50.
    D. Osei-Kuffuor and Y. Saad. Preconditioning Helmholtz linear systems. Appl. Numer. Math., 60(4):420–431, 2010.CrossRefMATHMathSciNetGoogle Scholar
  51. 51.
    V. Rokhlin. Rapid solution of integral equations of scattering theory in two dimensions. J. Comput. Phys., 86(2):414–439, 1990.CrossRefMATHMathSciNetGoogle Scholar
  52. 52.
    V. Rokhlin. Diagonal forms of translation operators for the Helmholtz equation in three dimensions. Appl. Comput. Harmon. Anal., 1(1):82–93, 1993.CrossRefMATHMathSciNetGoogle Scholar
  53. 53.
    Y. Saad. Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematics, Philadelphia, PA, second edition, 2003.CrossRefMATHGoogle Scholar
  54. 54.
    Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7(3):856–869, 1986.CrossRefMATHMathSciNetGoogle Scholar
  55. 55.
    C. E. Shannon. Communication in the presence of noise. Proc. I.R.E., 37:10–21, 1949.Google Scholar
  56. 56.
    J. M. Song and W. C. Chew. Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering. Microwave Opt. Tech. Lett., 10(1):15–19, 1995.CrossRefGoogle Scholar
  57. 57.
    R. F. Susan-Resiga and H. M. Atassi. A domain decomposition method for the exterior Helmholtz problem. J. Comput. Phys., 147(2):388–401, 1998.CrossRefMATHMathSciNetGoogle Scholar
  58. 58.
    P. Vaněk, J. Mandel, and M. Brezina. Two-level algebraic multigrid for the Helmholtz problem. In Domain decomposition methods, 10 (Boulder, CO, 1997), volume 218 of Contemp. Math., pages 349–356. Amer. Math. Soc., Providence, RI, 1998.Google Scholar
  59. 59.
    S. Wang, M. V. de Hoop, and J. Xia. Acoustic inverse scattering via Helmholtz operator factorization and optimization. J. Comput. Phys., 229(22):8445–8462, 2010.CrossRefMATHMathSciNetGoogle Scholar
  60. 60.
    J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li. Superfast multifrontal method for large structured linear systems of equations. SIAM J. Matrix Anal. Appl., 31(3):1382–1411, 2009.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Mathematics and ICESThe University of Texas at AustinAustinUSA

Personalised recommendations