Semantic Reasoning with SPARQL in Heterogeneous Multi-context Systems

  • Peter Schüller
  • Antonius Weinzierl
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 83)


Multi-Context Systems (MCSs) are an expressive framework for interlinking heterogeneous knowledge systems, called contexts. Possible contexts are ontologies, relational databases, logic programs, RDF triplestores, etc. MCSs contain bridge rules to specify knowledge exchange between contexts. We extend the MCS formalism and propose SPARQL-MCS where knowledge exchange is specified in the style of SPARQL CONSTRUCT queries. Different from previous approaches to variables in MCSs, we do not impose any restrictions on contexts. To achieve this, we introduce a general approach for variable substitutions in heterogeneous systems. We define syntax and semantics of SPARQL-MCS and investigate fixpoint evaluation of monotonic MCSs.


Description Logic Belief State SPARQL Query Variable Substitution Semantic Reasoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Analyti, A., Antoniou, G., Damasio, C.V.: MWeb: A principled framework for modular web rule bases and its semantics. ACM Trans. Comput. Logic 12(2) (2011)Google Scholar
  2. 2.
    Arenas, M., Gutierrez, C., Pérez, J.: Foundations of RDF Databases, pp. 158–204. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  3. 3.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  4. 4.
    Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In: AAAI, pp. 385–390 (2007)Google Scholar
  5. 5.
    Brewka, G., Roelofsen, F., Serafini, L.: Contextual default reasoning. In: IJCAI, pp. 268–273 (2007)Google Scholar
  6. 6.
    Cyganiak, R., Harth, A., Hogan, A.: N-Quads: Extending N-Triples with Context (2009),
  7. 7.
    Eiter, T., Fink, M., Weinzierl, A.: Preference-based inconsistency assessment in multi-context systems. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 143–155. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Fink, M., Ghionna, L., Weinzierl, A.: Relational information exchange and aggregation in multi-context systems. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 120–133. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics, or: How we can do without modal logics. Artificial Intelligence 65(1), 29–70 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Leone, N., Perri, S., Scarcello, F.: Improving ASP instantiators by join-ordering methods. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 280–294. Springer, Heidelberg (2001)Google Scholar
  11. 11.
    Polleres, A.: From sparql to rules (and back). In: Williamson, C.L., Zurko, M.E., Patel-Schneider, P.F., Shenoy, P.J. (eds.) WWW, pp. 787–796. ACM, New York (2007)CrossRefGoogle Scholar
  12. 12.
    Roelofsen, F., Serafini, L.: Minimal and absent information in contexts. In: IJCAI, pp. 558–563 (2005)Google Scholar
  13. 13.
    Serafini, L., Giunchiglia, F., Mylopoulos, J., Bernstein, P.A.: Local relational model: A logical formalization of database coordination. In: Blackburn, P., Ghidini, C., Turner, R.M., Giunchiglia, F. (eds.) CONTEXT 2003. LNCS, vol. 2680, pp. 286–299. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Peter Schüller
    • 1
  • Antonius Weinzierl
    • 1
  1. 1.Institut für InformationssystemeTechnische Universität WienViennaAustria

Personalised recommendations