A Reference Architecture for Building Semantic-Web Mediators

  • Carlos R. Rivero
  • Inma Hernández
  • David Ruiz
  • Rafael Corchuelo
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 83)


The Semantic Web comprises a large amount of distributed and heterogeneous ontologies, which have been developed by different communities, and there exists a need to integrate them. Mediators are pieces of software that help to perform this integration, which have been widely studied in the context of nested relational models. Unfortunately, mediators for databases that are modelled using ontologies have not been so widely studied. In this paper, we present a reference architecture for building semantic-web mediators. To the best of our knowledge, this is the first reference architecture in the bibliography that solves the integration problem as a whole, contrarily to existing approaches that focus on specific problems. Furthermore, we describe a case study that is contextualised in the digital libraries domain in which we realise the benefits of our reference architecture. Finally, we identify a number of best practices to build semantic-web mediators.


Information Integration Mediator Semantic-web Technologies 


  1. 1.
    Aleman-Meza, B., et al.: SwetoDblp ontology of computer science publications. J. Web Sem. 5(3) (2007)Google Scholar
  2. 2.
    Alexe, B., et al.: Muse: a system for understanding and designing mappings. In: SIGMOD Conference (2008)Google Scholar
  3. 3.
    Antoniou, G., van Harmelen, F.: A Semantic Web Primer, 2nd edn. (2008)Google Scholar
  4. 4.
    Ashburner, M., et al.: Gene Ontology: tool for the unification of biology. Nature genetics 25 (2000)Google Scholar
  5. 5.
    Bernstein, P.A., Haas, L.M.: Information integration in the enterprise. Commun. ACM 51(9) (2008)Google Scholar
  6. 6.
    Bizer, C., et al.: DBpedia - a crystallization point for the web of data. J. Web Sem. (2009)Google Scholar
  7. 7.
    Bizer, C., Schultz, A.: The berlin SPARQL benchmark. In: Int. J. Semantic Web Inf. Syst. (2009)Google Scholar
  8. 8.
    Bouquet, P., et al.: Contextualizing ontologies. J. Web Sem. 1(4) (2004)Google Scholar
  9. 9.
    Braga, D., et al.: Optimization of multi-domain queries on the web. PVLDB 1(1) (2008)Google Scholar
  10. 10.
    Broekstra, J., et al.: Sesame: A generic architecture for storing and querying RDF and RDF schema. In: International Semantic Web Conference (2002)Google Scholar
  11. 11.
    Carroll, J.J., et al.: Jena: implementing the semantic web recommendations. In: WWW (2004)Google Scholar
  12. 12.
    Celma, Ò., Serra, X.: FOAFing the music: Bridging the semantic gap in music recommendation. J. Web Sem. 6(4) (2008)Google Scholar
  13. 13.
    Correndo, G., et al.: SPARQL query rewriting for implementing data integration over linked data. In: EDBT/ICDT Workshops (2010)Google Scholar
  14. 14.
    de Viana, I.F., Hernandez, I., Jiménez, P., Rivero, C.R., Sleiman, H.A.: Integrating deep-web information sources. In: Demazeau, Y., Dignum, F., Corchado, J.M., Bajo, J., Corchuelo, R., Corchado, E., Fernández-Riverola, F., Julián, V.J., Pawlewski, P., Campbell, A. (eds.) Trends in PAAMS. Advances in Intelligent and Soft Computing, vol. 71, pp. 311–320. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Dou, D., et al.: Ontology translation on the semantic web. J. Data Semantics 2 (2005)Google Scholar
  16. 16.
    Euzenat, J.: An API for ontology alignment. In: International Semantic Web Conference (2004)Google Scholar
  17. 17.
    Euzenat, J., Shvaiko, P.: Ontology matching (2007)Google Scholar
  18. 18.
    Fagin, R., et al.: Data exchange: semantics and query answering. Theor. Comput. Sci. 336(1) (2005)Google Scholar
  19. 19.
    Friedman, M., et al.: Navigational plans for data integration. In: AAAI (1999)Google Scholar
  20. 20.
    Haase, P., Wang, Y.: A decentralized infrastructure for query answering over distributed ontologies. In: ACM Symposium on Applied Computing (2007)Google Scholar
  21. 21.
    Halevy, A.Y.: Answering queries using views: A survey. VLDB J. 10(4) (2001)Google Scholar
  22. 22.
    Halevy, A.Y., et al.: Piazza: data management infrastructure for semantic web applications. In: WWW (2003)Google Scholar
  23. 23.
    Ives, Z.G., et al.: Adapting to source properties in processing data integration queries. In: SIGMOD Conference (2004)Google Scholar
  24. 24.
    Jing, Y., et al.: SPARQL graph pattern rewriting for OWL-DL inference queries. Knowl. Inf. Syst. (2009)Google Scholar
  25. 25.
    Karvounarakis, G., et al.: Querying the semantic web with RQL. Computer Networks 42(5) (2003)Google Scholar
  26. 26.
    Langegger, A., Wöß, W., Blöchl, M.: A semantic web middleware for virtual data integration on the web. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 493–507. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Lenzerini, M.: Data integration: A theoretical perspective. In: Symposium on Principles of Database Systems (2002)Google Scholar
  28. 28.
    Maedche, A., et al.: MAFRA - a MApping FRAmework for distributed ontologies. In: Knowledge Acquisition, Modeling and Management (2002)Google Scholar
  29. 29.
    Maedche, A., et al.: Managing multiple and distributed ontologies on the semantic web. VLDB J. 12(4) (2003)Google Scholar
  30. 30.
    Makris, K., Bikakis, N., Gioldasis, N., Tsinaraki, C., Christodoulakis, S.: Towards a mediator based on OWL and SPARQL. In: Lytras, M.D., Damiani, E., Carroll, J.M., Tennyson, R.D., Avison, D., Naeve, A., Dale, A., Lefrere, P., Tan, F., Sipior, J., Vossen, G. (eds.) WSKS 2009. LNCS, vol. 5736, pp. 326–335. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  31. 31.
    Miller, R.J., et al.: Schema mapping as query discovery. In: Very Large Data Bases (2000)Google Scholar
  32. 32.
    Motik, B., et al.: Bridging the gap between OWL and relational databases. J. Web Sem. 7(2) (2009)Google Scholar
  33. 33.
    Noy, N.F., Klein, M.C.A.: Ontology evolution: Not the same as schema evolution. Knowl. Inf. Syst. 6(4) (2004)Google Scholar
  34. 34.
    Noy, N.F., et al.: Making biomedical ontologies and ontology repositories work. IEEE Intelligent Systems 19(6) (2004)Google Scholar
  35. 35.
    Pan, A., et al.: The denodo data integration platform. In: Very Large Data Bases (2002)Google Scholar
  36. 36.
    Parreiras, F.S., et al.: Model driven specification of ontology translations. In: International Conference on Conceptual Modeling / the Entity Relationship Approach (2008)Google Scholar
  37. 37.
    Petropoulos, M., et al.: Exporting and interactively querying web service-accessed sources: The CLIDE system. ACM Trans. Database Syst. 32(4) (2007)Google Scholar
  38. 38.
    Polleres, A., Scharffe, F., Schindlauer, R.: SPARQL++ for mapping between RDF vocabularies. In: Chung, S. (ed.) OTM 2007, Part I. LNCS, vol. 4803, pp. 878–896. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  39. 39.
    Popa, L., et al.: Translating web data. In: Very Large Data Bases (2002)Google Scholar
  40. 40.
    Qin, H., Dou, D., LePendu, P.: Discovering executable semantic mappings between ontologies. In: Chung, S. (ed.) OTM 2007, Part I. LNCS, vol. 4803, pp. 832–849. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  41. 41.
    Quilitz, B., Leser, U.: Querying distributed RDF data sources with SPARQL. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 524–538. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  42. 42.
    Raffio, A., et al.: Clip: a tool for mapping hierarchical schemas. In: SIGMOD Conference (2008)Google Scholar
  43. 43.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB J. 10(4) (2001)Google Scholar
  44. 44.
    Scharffe, F., et al.: Towards design patterns for ontology alignment. In: ACM Symposium on Applied Computing (2008)Google Scholar
  45. 45.
    Schmidt, M., et al.: Foundations of SPARQL query optimization. In: ICDT (2010)Google Scholar
  46. 46.
    Schmidt, M., et al.: SP2Bench: A SPARQL performance benchmark. In: International Conference on Data Engineering (2009)Google Scholar
  47. 47.
    Serafini, L., Tamilin, A.: Instance migration in heterogeneous ontology environments. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 452–465. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  48. 48.
    Shadbolt, N., et al.: The semantic web revisited. IEEE Intelligent Systems 21(3) (2006)Google Scholar
  49. 49.
    Sirin, E., et al.: Pellet: A practical OWL-DL reasoner. J. Web Sem. 5(2) (2007)Google Scholar
  50. 50.
    Thakkar, S., et al.: Composing, optimizing, and executing plans for bioinformatics web services. VLDB J. 14(3) (2005)Google Scholar
  51. 51.
    Uschold, M., Grüninger, M.: Ontologies and semantics for seamless connectivity. SIGMOD Record 33(4) (2004)Google Scholar
  52. 52.
    Yu, C., Popa, L.: Constraint-based XML query rewriting for data integration. In: SIGMOD Conference (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Carlos R. Rivero
    • 1
  • Inma Hernández
    • 1
  • David Ruiz
    • 1
  • Rafael Corchuelo
    • 1
  1. 1.University of SevillaSpain

Personalised recommendations