Synthesizing Glue Operators from Glue Constraints for the Construction of Component-Based Systems

  • Simon Bliudze
  • Joseph Sifakis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6708)


We study glue operators used in component-based frameworks to obtain systems as the composition of atomic components described as labeled transition systems (LTS). Glue operators map tuples of LTS into LTS. They restrict the behavior of their arguments by performing memoryless coordination. In a previous paper, we have proposed a simple format for SOS rules that captures, in particular, glue operators from known frameworks such as CCS, SCCS, CSP, and BIP.

This paper studies a new way for characterizing glue operators: as boolean glue constraints between interactions (sets of ports) and the state of the coordinated components. We provide an SOS format for glue, which allows a natural correspondence between glue operators and glue constraints. This correspondence is used for automated synthesis of glue operators implementing given glue constraints. By focusing on the properties that do not bear computation, we reduce a very hard (and, in general, undecidable) problem of synthesizing controllers to a tractable one. The examples in the paper show that such properties are natural and can be expressed as glue constraints in a straightforward manner. Finally, we compare expressiveness of the proposed formalisms with the glue used in the BIP framework and discuss possible applications.


Inference Rule Composition Operator Label Transition System Atomic Component Rescue Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in BIP. In: 4th IEEE Int. Conf. on Software Engineering and Formal Methods (SEFM 2006), pp. 3–12 (2006) Invited talkGoogle Scholar
  2. 2.
    Bliudze, S., Sifakis, J.: A notion of glue expressiveness for component-based systems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 508–522. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Bloom, B.: Ready Simulation, Bisimulation, and the Semantics of CCS-Like Languages. PhD thesis, Massachusetts Institute of Technology (1989)Google Scholar
  4. 4.
    Plotkin, G.D.: A structural approach to operational semantics. Technical Report DAIMI FN-19, University of Aarhus (1981)Google Scholar
  5. 5.
    Mousavi, M., Reniers, M.A., Groote, J.F.: SOS formats and meta-theory: 20 years after. Theoretical Computer Science 373(3), 238–272 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cheng, C.P., Fristoe, T., Lee, E.A.: Applied verification: The Ptolemy approach. Technical Report UCB/EECS-2008-41, University of California at Berkeley (2008)Google Scholar
  7. 7.
    Bliudze, S., Sifakis, J.: The algebra of connectors — Structuring interaction in BIP. In: Proc. of the EMSOFT 2007, pp. 11–20. ACM SigBED, New York (2007)Google Scholar
  8. 8.
    Bliudze, S., Sifakis, J.: Causal semantics for the algebra of connectors. Formal Methods in System Design 36(2), 167–194 (2010)CrossRefzbMATHGoogle Scholar
  9. 9.
    Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In: Annual IEEE Symposium on Foundations of Computer Science vol. 2, pp. 746–757 (1990)Google Scholar
  10. 10.
    Lustig, Y., Vardi, M.Y.: Synthesis from component libraries. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 395–409. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Bensalem, S., Bozga, M., Nguyen, T.-H., Sifakis, J.: D-Finder: A tool for compositional deadlock detection and verification. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 614–619. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Balarin, F., et al.: Metropolis: An integrated electronic system design environment. IEEE Computer 36(4), 45–52 (2003)CrossRefGoogle Scholar
  13. 13.
    Balasubramanian, K., et al.: Developing applications using model-driven design environments. IEEE Computer 39(2), 33–40 (2006)CrossRefGoogle Scholar
  14. 14.
    Eker, J., et al.: Taming heterogeneity: The Ptolemy approach. Proc. of the IEEE 91(1), 127–144 (2003)CrossRefGoogle Scholar
  15. 15.
    Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors. Theor. Comput. Sci. 366(1), 98–120 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fribourg, L., Peixoto, M.V.: Concurrent constraint automata. In: ILPS 1993: Proc. of the 1993 International Symposium on Logic Programming, vol. 656. MIT Press, Cambridge (1993)Google Scholar
  17. 17.
    Baier, C., et al.: Modeling component connectors in Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gößler, G., Sifakis, J.: Composition for component-based modeling. Sci. Comput. Program. 55(1–3), 161–183 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Montanari, U., Rossi, F.: Graph rewriting and constraint solving for modelling distributed systems with synchronization (extended abstract). In: Hankin, C., Ciancarini, P. (eds.) COORDINATION 1996. LNCS, vol. 1061, pp. 12–27. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  20. 20.
    Clarke, D., et al.: Deconstructing Reo. In: FOCLASA 2008. ENTCS (2008)Google Scholar
  21. 21.
    Halbwachs, N., et al.: The synchronous dataflow programming language lustre. Proc. of the IEEE 79, 1305–1320 (1991)CrossRefGoogle Scholar
  22. 22.
    Berry, G., Gonthier, G.: The esterel synchronous programming language: Design, semantics implementation. Sci. Comput. Program. 19(2), 87–152 (1992)CrossRefzbMATHGoogle Scholar
  23. 23.
    Benveniste, A., Guernic, P.L., Jacquemot, C.: Synchronous programming with events and relations: the SIGNAL language and its semantics. Sci. Comput. Program. 16(2), 103–149 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Inverardi, P., Scriboni, S.: Connectors synthesis for deadlock-free component-based architectures. In: ASE 2001, pp. 174–181. IEEE Computer Society, Los Alamitos (2001)Google Scholar
  25. 25.
    Arbab, F., Baier, C., de Boer, F.S., Rutten, J., Sirjani, M.: Synthesis of Reo Circuits for Implementation of Component-Connector Automata Specifications. In: Jacquet, J.-M., Picco, G.P. (eds.) COORDINATION 2005. LNCS, vol. 3454, pp. 236–251. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Arbab, F., Meng, S.: Synthesis of connectors from scenario-based interaction specifications. In: Chaudron, M.R.V., Ren, X.-M., Reussner, R. (eds.) CBSE 2008. LNCS, vol. 5282, pp. 114–129. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Basu, A., et al.: Incremental component-based construction and verification of a robotic system. In: ECAI, pp. 631–635 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Simon Bliudze
    • 1
  • Joseph Sifakis
    • 2
  1. 1.CEA, LIST, Boîte CourrierFrance
  2. 2.VERIMAG, Centre ÉquationGièresFrance

Personalised recommendations