Local Matching Dynamics in Social Networks

  • Martin Hoefer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6756)


We study stable marriage and roommates problems in graphs with locality constraints. Each player is a node in a social network and has an incentive to match with other players. The value of a match is specified by an edge weight. Players explore possible matches only based on their current neighborhood. We study convergence of natural better-response dynamics that converge to locally stable matchings – matchings that allow no incentive to deviate with respect to their imposed information structure in the social network. For every starting state we construct in polynomial time a sequence of polynomially many better-response moves to a locally stable matching. However, for a large class of oblivious dynamics including random and concurrent better-response the convergence time turns out to be exponential. In contrast, convergence time becomes polynomial if we allow the players to have a small amount of random memory, even for many-to-many matchings and more general notions of neighborhood.


Stable Match Preference List Social Link Matching Edge Marked Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, D., Levavi, A., Manlove, D., O’Malley, G.: The stable roommates problem with globally ranked pairs. Internet Math. 5(4), 493–515 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Ackermann, H., Goldberg, P., Mirrokni, V., Röglin, H., Vöcking, B.: Uncoordinated two-sided matching markets. SIAM J. Comput. 40(1), 92–106 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Akkaya, K., Guneydas, I., Bicak, A.: Autonomous actor positioning in wireless sensor and actor networks using stable-matching. Intl. J. Parallel, Emergent and Distrib. Syst. 25(6), 439–464 (2010)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Anshelevich, E., Hoefer, M.: Contribution games in social networks. In: Proc. 18th European Symposium on Algorithms (ESA), vol. 1, pp. 158–169 (2010)Google Scholar
  5. 5.
    Arcaute, E., Vassilvitskii, S.: Social networks and stable matchings in the job market. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 220–231. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Echenique, F., Oviedo, J.: A theory of stability in many-to-many matching markets. Theoretical Economics 1(2), 233–273 (2006)Google Scholar
  7. 7.
    Eriksson, K., Häggström, O.: Instability of matchings in decentralized markets with various preference structures. Intl. J. Game Theory 36(3-4), 409–420 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Feder, T., Megiddo, N., Plotkin, S.: A sublinear parallel algorithm for stable matching. Theoret. Comput. Sci. 233(1-2), 297–308 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Fleiner, T.: A fixed-point approach to stable matchings and some applications. Math. Oper. Res. 28(1), 103–126 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Floréen, P., Kaski, P., Polishchuk, V., Suomela, J.: Almost stable matchings by truncating the gale-shapley algorithm. Algorithmica 58(1), 102–118 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Gale, D., Shapley, L.: College admissions and the stability of marriage. Amer. Math. Monthly 69(1), 9–15 (1962)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Goemans, M., Li, L., Mirrokni, V., Thottan, M.: Market sharing games applied to content distribution in ad-hoc networks. IEEE J. Sel. Area Comm. 24(5), 1020–1033 (2006)CrossRefGoogle Scholar
  13. 13.
    Gusfield, D., Irving, R.: The Stable Marriage Problem: Structure and Algorithms. MIT Press, Cambridge (1989)zbMATHGoogle Scholar
  14. 14.
    Kelso, A., Crawford, V.: Job matchings, coalition formation and gross substitute. Econometrica 50, 1483–1504 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Khuller, S., Mitchell, S., Vazirani, V.: On-line algorithms for weighted bipartite matching and stable marriages. Theoret. Comput. Sci. 127(2), 255–267 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Kipnis, A., Patt-Shamir, B.: On the complexity of distributed stable matching with small messages. Distributed Computing 23(3), 151–161 (2010)CrossRefzbMATHGoogle Scholar
  17. 17.
    Knuth, D.: Marriages Stables et leurs relations avec d’autres problemes combinatoires. Les Presses de l’Université de Montréal (1976)Google Scholar
  18. 18.
    Mathieu, F.: Self-stabilization in preference-based systems. Peer-to-Peer Netw. Appl. 1(2), 104–121 (2008)CrossRefGoogle Scholar
  19. 19.
    Roth, A., Sönmezc, T., Ünverd, M.U.: Pairwise kidney exchange. J. Econ. Theory 125(2), 151–188 (2005)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Roth, A., Sotomayor, M.O.: Two-sided Matching: A study in game-theoretic modeling and analysis. Cambridge University Press, Cambridge (1990)CrossRefzbMATHGoogle Scholar
  21. 21.
    Roth, A., Vate, J.H.V.: Random paths to stability in two-sided matching. Econometrica 58(6), 1475–1480 (1990)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Martin Hoefer
    • 1
  1. 1.Dept. of Computer ScienceRWTH Aachen UniversityGermany

Personalised recommendations