Nearly Optimal Bounds for Distributed Wireless Scheduling in the SINR Model

  • Magnús M. Halldórsson
  • Pradipta Mitra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6756)


We study the wireless scheduling problem in the physically realistic SINR model. More specifically: we are given a set of n links, each a sender-receiver pair. We would like to schedule the links using the minimum number of slots, using the SINR model of interference among simultaneously transmitting links. In the basic problem, all senders transmit with the same uniform power.

In this work, we provide a distributed O(logn)-approximation for the scheduling problem, matching the best ratio known for centralized algorithms. This is based on an algorithm studied by Kesselheim and Vöcking, improving their analysis by a logarithmic factor. We show this to be best possible for any such distributed algorithm.

Our analysis extends also to linear power assignments, and as well as for more general assignments, modulo assumptions about message acknowledgement mechanisms.


Distributed Scheduling Wireless Networks SINR Model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrews, M., Dinitz, M.: Maximizing capacity in arbitrary wireless networks in the SINR model: Complexity and game theory. In: INFOCOM, pp. 1332–1340. IEEE, Los Alamitos (2009)Google Scholar
  2. 2.
    Ásgeirsson, E.I., Mitra, P.: On a game theoretic approach to capacity maximization in wireless networks. In: INFOCOM (2011)Google Scholar
  3. 3.
    Chafekar, D., Kumar, V.S., Marathe, M., Parthasarathy, S., Srinivasan, A.: Cross-layer Latency Minimization for Wireless Networks using SINR Constraints. In: Mobihoc (2007)Google Scholar
  4. 4.
    Dinitz, M.: Distributed algorithms for approximating wireless network capacity. In: INFOCOM, pp. 1397–1405. IEEE, Los Alamitos (2010)Google Scholar
  5. 5.
    Fanghänel, A., Kesselheim, T., Räcke, H., Vöcking, B.: Oblivious interference scheduling. In: PODC, pp. 220–229 (August 2009)Google Scholar
  6. 6.
    Fanghänel, A., Keßelheim, T., Vöcking, B.: Improved algorithms for latency minimization in wireless networks. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 447–458. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Goussevskaia, O., Halldórsson, M.M., Wattenhofer, R., Welzl, E.: Capacity of Arbitrary Wireless Networks. In: INFOCOM, pp. 1872–1880 (April 2009)Google Scholar
  8. 8.
    Grönkvist, J., Hansson, A.: Comparison between graph-based and interference-based STDMA scheduling. In: Mobihoc, pp. 255–258 (2001)Google Scholar
  9. 9.
    Gupta, P., Kumar, P.R.: The Capacity of Wireless Networks. IEEE Trans. Information Theory 46(2), 388–404 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Halldórsson, M.M.: Wireless scheduling with power control (September 2010); Earlier version appears in ESA 2009,
  11. 11.
    Halldórsson, M.M., Mitra, P.: Wireless Capacity with Oblivious Power in General Metrics. In: SODA (2011)Google Scholar
  12. 12.
    Halldórsson, M.M., Wattenhofer, R.: Wireless Communication Is in APX. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 525–536. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Kesselheim, T.: A Constant-Factor Approximation for Wireless Capacity Maximization with Power Control in the SINR Model. In: SODA (2011)Google Scholar
  14. 14.
    Kesselheim, T., Vöcking, B.: Distributed contention resolution in wireless networks. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 163–178. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Maheshwari, R., Jain, S., Das, S.R.: A measurement study of interference modeling and scheduling in low-power wireless networks. In: SenSys, pp. 141–154 (2008)Google Scholar
  16. 16.
    Moscibroda, T., Wattenhofer, R.: The Complexity of Connectivity in Wireless Networks. In: INFOCOM (2006)Google Scholar
  17. 17.
    Moscibroda, T., Wattenhofer, R., Weber, Y.: Protocol Design Beyond Graph-Based Models. In: Hotnets (November 2006)Google Scholar
  18. 18.
    Tanenbaum, A.: Computer Networks. Prentice Hall Professional Technical Reference, 4th edn. (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Magnús M. Halldórsson
    • 1
  • Pradipta Mitra
    • 1
  1. 1.ICE-TCS, School of Computer ScienceReykjavik UniversityReykjavikIceland

Personalised recommendations