Advertisement

A 1.488 Approximation Algorithm for the Uncapacitated Facility Location Problem

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6756)

Abstract

We present a 1.488 approximation algorithm for the metric uncapacitated facility location (UFL) problem. Previously the best algorithm was due to Byrka [1]. By linearly combining two algorithms A1(γ f ) for γ f  ≈ 1.6774 and the (1.11,1.78)-approximation algorithm A2 proposed by Jain, Mahdian and Saberi [8], Byrka gave a 1.5 approximation algorithm for the UFL problem. We show that if γ f is randomly selected from some distribution, the approximation ratio can be improved to 1.488. Our algorithm cuts the gap with the 1.463 approximability lower bound by almost 1/3.

Keywords

Approximation Facility Location Problem Theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Byrka, J.: An optimal bifactor approximation algorithm for the metric uncapacitated facility location problem. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 29–43. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Byrka, J., Ghodsi, M., Srinivasan, A.: Lp-rounding algorithms for facility-location problems. in arxiv1007.3611 (2010)Google Scholar
  3. 3.
    Charikar, M., Guha, S.: Improved combinatorial algorithms for the facility location and k-median problems. In: Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science, pp. 378–388 (1999)Google Scholar
  4. 4.
    Chudak, F.A., Shmoys, D.B.: Improved approximation algorithms for the uncapacitated facility location problem. SIAM J. Comput. 33(1), 1–25 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. Journal of Algorithms, 649–657 (1998)Google Scholar
  6. 6.
    Hochbaum, D.S.: Heuristics for the fixed cost median problem. Mathematical Programming 22, 148–162 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility location algorithms analyzed using dual fitting with factor-revealing lp. J. ACM 50, 795–824 (2003), http://doi.acm.org/10.1145/950620.950621 CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Jain, K., Mahdian, M., Saberi, A.: A new greedy approach for facility location problems. In: Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of Computing, STOC 2002, pp. 731–740. ACM, New York (2002), http://doi.acm.org/10.1145/509907.510012 CrossRefGoogle Scholar
  9. 9.
    Korupolu, M.R., Plaxton, C.G., Rajaraman, R.: Analysis of a local search heuristic for facility location problems. In: Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1998, Philadelphia, PA, USA, pp. 1–10 (1998), http://portal.acm.org/citation.cfm?id=314613.314616
  10. 10.
    Lin, J., Vitter, J.S.: Approximation algorithms for geometric median problems. Inf. Process. Lett. 44, 245–249 (1992), http://portal.acm.org/citation.cfm?id=152566.152569 CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Mahdian, M., Ye, Y., Zhang, J.: Approximation algorithms for metric facility location problems. SIAM J. Comput. 36(2), 411–432 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Shmoys, D.B., Tardos, E., Aardal, K.: Approximation algorithms for facility location problems (extended abstract). In: STOC 1997: Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing, pp. 265–274. ACM, New York (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Shi Li
    • 1
  1. 1.Department of Computer SciencePrinceton UniversityPrincetonUSA

Personalised recommendations