Existence and Uniqueness of Equilibria for Flows over Time

  • Roberto Cominetti
  • José R. Correa
  • Omar Larré
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6756)


Network flows that vary over time arise naturally when modeling rapidly evolving systems such as the Internet. In this paper, we continue the study of equilibria for flows over time in the single-source single-sink deterministic queuing model proposed by Koch and Skutella. We give a constructive proof for the existence and uniqueness of equilibria for the case of a piecewise constant inflow rate, through a detailed analysis of the static flows obtained as derivatives of a dynamic equilibrium.


Flows Over Time Network Equilibrium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, E.J., Philpott, A.B.: Optimisation of flows in networks over time. In: Kelly, F.P. (ed.) Probability, Statistics and Optimisation, pp. 369–382. Wiley, New York (1994)Google Scholar
  2. 2.
    Bhaskar, U., Fleischer, L., Anshelevich, E.: A stackelberg strategy for routing flow over time. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 192–201 (2011)Google Scholar
  3. 3.
    Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2010)CrossRefGoogle Scholar
  4. 4.
    Facchinei, F., Pang, J.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I. Springer, New York (2003)zbMATHGoogle Scholar
  5. 5.
    Fleischer, L., Tardos, E.: Efficient continuous-time dynamic network flow algorithms. Operations Research 23(3-5), 71–80 (1998)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Ford, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows. Operations Research 6, 419–433 (1958)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)zbMATHGoogle Scholar
  8. 8.
    Gale, D.: Transient flows in networks. Michigan Mathematical Journal 6, 59–63 (1959)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Koch, R., Skutella, M.: Nash equilibria and the price of anarchy for flows over time. Theory of Computing Systems (to appear)Google Scholar
  10. 10.
    Macko, M., Larson, K., Steskal, Ľ.: Braess’s Paradox for Flows over Time. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.) Algorithmic Game Theory. LNCS, vol. 6386, pp. 262–275. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Ran, B., Boyce, D.: Modeling Dynamic Transportation Networks. Springer, Berlin (1996)CrossRefzbMATHGoogle Scholar
  12. 12.
    Skutella, M.: An introduction to network flows over time. In: Cook, W., Lovasz, L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 451–482. Springer, Berlin (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Roberto Cominetti
    • 1
  • José R. Correa
    • 1
  • Omar Larré
    • 1
  1. 1.Department of Industrial EngineeringUniversidad de ChileSantiagoChile

Personalised recommendations