Advertisement

Distance Oracles for Vertex-Labeled Graphs

  • Danny Hermelin
  • Avivit Levy
  • Oren Weimann
  • Raphael Yuster
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6756)

Abstract

Given a graph G = (V,E) with non-negative edge lengths whose vertices are assigned a label from L = {λ 1,…,λ }, we construct a compact distance oracle that answers queries of the form: “What is δ(v,λ)?”, where v ∈ V is a vertex in the graph, λ ∈ L a vertex label, and δ(v,λ) is the distance (length of a shortest path) between v and the closest vertex labeled λ in G. We formalize this natural problem and provide a hierarchy of approximate distance oracles that require subquadratic space and return a distance of constant stretch. We also extend our solution to dynamic oracles that handle label changes in sublinear time.

Keywords

Query Time Query Algorithm Distance Dist Label Distance Unlabeled Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baswana, S., Gaur, A., Sen, S., Upadhyay, J.: Distance oracles for unweighted graphs: Breaking the quadratic barrier with constant additive error. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 609–621. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Baswana, S., Kavitha, T.: Faster algorithms for approximate distance oracles and all-pairs small stretch paths. In: Proc. of the 47th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 591–602 (2006)Google Scholar
  3. 3.
    Erdős, P.: Extremal problems in graph theory. Theory of graphs and its applications, 29–36 (1964)Google Scholar
  4. 4.
    Matoušek, J.: On the distortion required for embedding finite metric spaces into normed spaces. Israel Journal of Mathematics (93), 333–344 (1996)Google Scholar
  5. 5.
    Pǎtraşcu, M., Roditty, L.: Distance oracles beyond the thorup-zwick bound. In: Proc. of the 51st annual symposium on Foundations Of Computer Science (FOCS), pp. 815–823 (2010)Google Scholar
  6. 6.
    Roditty, L., Thorup, M., Zwick, U.: Deterministic constructions of approximate distance oracles and spanners. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 261–272. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Sommer, C., Verbin, E., Yu, W.: Distance oracles for sparse graphs. In: Proc. of the 50th IEEE Symposium on Foundation of Computer Science (FOCS), pp. 703–712 (2009)Google Scholar
  8. 8.
    Thorup, M., Zwick, U.: Compact routing schemes. In: Proc. of the 13th ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 1–10 (2001)Google Scholar
  9. 9.
    Thorup, M., Zwick, U.: Approximate distance oracles. Journal of the ACM 52(1), 1–24 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    van Emde Boas, P., Kaas, R., Ziljstra, E.: Design and implementation of an effcient priority queue. Mathematical Systems Theory 10, 99–127 (1977)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Danny Hermelin
    • 1
  • Avivit Levy
    • 2
  • Oren Weimann
    • 3
  • Raphael Yuster
    • 4
  1. 1.Max-Planck Institut fur informatikGermany
  2. 2.Shenkar College and CRI at University of HaifaIsrael
  3. 3.Weizmann InstituteIsrael
  4. 4.University of HaifaIsrael

Personalised recommendations