On Reachability for Hybrid Automata over Bounded Time

  • Thomas Brihaye
  • Laurent Doyen
  • Gilles Geeraerts
  • Joël Ouaknine
  • Jean-François Raskin
  • James Worrell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6756)

Abstract

This paper investigates the time-bounded version of the reachability problem for hybrid automata. This problem asks whether a given hybrid automaton can reach a given target location within T time units, where T is a constant rational value. We show that, in contrast to the classical (unbounded) reachability problem, the timed-bounded version is decidable for rectangular hybrid automata provided only non-negative rates are allowed. This class of systems is of practical interest and subsumes, among others, the class of stopwatch automata. We also show that the problem becomes undecidable if either diagonal constraints or both negative and positive rates are allowed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. TCS 138(1) (1995)Google Scholar
  2. 2.
    Alur, R., Dill, D.L.: A theory of timed automata. Th. Comp. Sci. 126(2), 183–235 (1994)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Cassez, F., Larsen, K.G.: The impressive power of stopwatches. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 138–152. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Ferrante, J., Rackoff, C.: A decision procedure for the first order theory of real addition with order. SIAM J. Comput. 4(1), 69–76 (1975)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Frehse, G.: Phaver: algorithmic verification of hybrid systems past hytech. Int. J. Softw. Tools Technol. Transf. 10, 263–279 (2008)CrossRefMATHGoogle Scholar
  6. 6.
    Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: Hytech: A model checker for hybrid systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 460–463. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  7. 7.
    Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Henzinger, T.A., Raskin, J.-F.: Robust undecidability of timed and hybrid systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 145–159. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall Series in Automatic Computation. Prentice-Hall Inc., Englewood Cliffs (1967)MATHGoogle Scholar
  10. 10.
    Ouaknine, J., Rabinovich, A., Worrell, J.: Time-bounded verification. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 496–510. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Ouaknine, J., Worrell, J.: Towards a theory of time-bounded verification. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 22–37. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Thomas Brihaye
    • 1
  • Laurent Doyen
    • 2
  • Gilles Geeraerts
    • 3
  • Joël Ouaknine
    • 4
  • Jean-François Raskin
    • 3
  • James Worrell
    • 4
  1. 1.Université de MonsBelgium
  2. 2.LSV, ENS Cachan & CNRSFrance
  3. 3.Université Libre de BruxellesBelgium
  4. 4.Oxford University Computing LaboratoryUK

Personalised recommendations