Modular Markovian Logic

  • Luca Cardelli
  • Kim G. Larsen
  • Radu Mardare
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6756)


We introduce Modular Markovian Logic (MML) for compositional continuous-time and continuous-space Markov processes. MML combines operators specific to stochastic logics with operators reflecting the modular structure of the models, similar to those used by spatial and separation logics. We present a complete Hilbert-style axiomatization for MML, prove the small model property and analyze the relation between stochastic bisimulation and logical equivalence.


Markov Process Polish Space Modular Structure Axiomatic System Process Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aumann, R.: Interactive epistemology: Probability. Int. J. Game Theory 28 (1999)Google Scholar
  2. 2.
    Bergstra, J.A., Klop, J.W.: ACP: A Universal Axiom System for Process Specification. CWI Quarterly 15 (1987)Google Scholar
  3. 3.
    Blute, R., Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labeled Markov processes. In: Proc. of LICS 1997. IEEE Press, Los Alamitos (1997)Google Scholar
  4. 4.
    Bravetti, M., Hermanns, H., Katoen, J.-P.: YMCA: Why Markov Chain Algebra? ENTCS 162 (2006)Google Scholar
  5. 5.
    Caires, L., Cardelli, L.: A Spatial Logic for Concurrency. Inf. and Comp. 186(2) (2003)Google Scholar
  6. 6.
    Cardelli, L., Gordon, A.: Anytime, anywhere: Modal logics for mobile ambients. In: Proc. of POPL 2000 (2000)Google Scholar
  7. 7.
    Cardelli, L., Mardare, R.: The Measurable Space of Stochastic Processes. In: QEST 2010. IEEE Press, Los Alamitos (2010)Google Scholar
  8. 8.
    Cardelli, L., Mardare, R.: Continuous Markovian Logic. Tech.Rep. TR-4-2010, The Microsoft Research-CoSBi Centre (2010)Google Scholar
  9. 9.
    Cirstea, C., Pattinson, D.: Modular proof systems for coalgebraic logics. TCS 388 (2007)Google Scholar
  10. 10.
    Doberkat, E.: Stochastic Relations. Foundations for Markov Transition Systems. Chapman and Hall/CRC (2007)Google Scholar
  11. 11.
    Desharnais, J., Edalat, A., Panangaden, P.: A logical characterization of bisimulation for labeled Markov processes. In: Proc of LICS 1998. IEEE Press, Los Alamitos (1998)Google Scholar
  12. 12.
    Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labeled Markov Processes. Inf. and Comp. 179(2) (2002)Google Scholar
  13. 13.
    Desharnais, J., Panangaden, P.: Continous Stochastic Logic Characterizes Bisimulation of Continuous-time Markov Processes. JLAP 56 (2003)Google Scholar
  14. 14.
    Fagin, R., Halpern, J.: Reasoning about knowledge and probability. J. ACM 41 (1994)Google Scholar
  15. 15.
    Harsanyi, J.: Games with incomplete information played by bayesian players, part one. Management Sci. 14 (1967)Google Scholar
  16. 16.
    Hillston, J.: Process algebras for quantitative analysis. In: Proc. LICS 2005. IEEE Press, Los Alamitos (2005)Google Scholar
  17. 17.
    Heifetz, A., Mongin, P.: Probability Logic for Type Spaces. Games and Economic Behavior 35 (2001)Google Scholar
  18. 18.
    Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. JACM 32 (1985)Google Scholar
  19. 19.
    Hoare, C.A.R.: Communicating sequential processes. Communications of the ACM 21(8) (1978)Google Scholar
  20. 20.
    Httel, H., Larsen, K.G.: The Use of Static Constructs in A Modal Process Logic. Logic at Botik (1989)Google Scholar
  21. 21.
    Kozen, D.: Results on the Propositional Mu-Calculus. TCS 27(3) (1983)Google Scholar
  22. 22.
    Kupke, C., Pattinson, D.: On Modal Logics of Linear Inequalities. In: Proc of AiML 2010 (2010)Google Scholar
  23. 23.
    Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. and Comp. 94 (1991)Google Scholar
  24. 24.
    Mardare, R.: Decidability of Modular Logics for Concurrency. In: Proc. of PS 2011 (2011)Google Scholar
  25. 25.
    Mardare, R., Policriti, A.: A Complete Axiomatic System for a Process-Based Spatial Logic. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 491–502. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Milner, R.: A calculus of communicating systems. Journal of the ACM (1980)Google Scholar
  27. 27.
    Moss, L.S., Viglizzo, I.D.: Harsanyi type spaces and final coalgebras constructed from satisfied theories. ENTCS 106 (2004)Google Scholar
  28. 28.
    Panangaden, P.: Labelled Markov Processes. Imperial College Press, London (2009)CrossRefzbMATHGoogle Scholar
  29. 29.
    Priami, C.: Stochastic π-Calculus. Computer Journal 38(7) (1995)Google Scholar
  30. 30.
    Reynolds, J.C.: Separation Logic: A Logic for Shared Mutable Data Structures. In: Proc. of LICS 2002. IEEE Press, Los Alamitos (2002)Google Scholar
  31. 31.
    Zhou, C.: A complete deductive system for probability logic with application to Harsanyi type spaces, PhD thesis, Indiana University (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Luca Cardelli
    • 1
  • Kim G. Larsen
    • 2
  • Radu Mardare
    • 2
  1. 1.Microsoft ResearchCambridgeUK
  2. 2.Aalborg UniversityDenmark

Personalised recommendations