Advertisement

Locality of Queries Definable in Invariant First-Order Logic with Arbitrary Built-in Predicates

  • Matthew Anderson
  • Dieter van Melkebeek
  • Nicole Schweikardt
  • Luc Segoufin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6756)

Abstract

We consider first-order formulas over relational structures which may use arbitrary numerical predicates. We require that the validity of the formula is independent of the particular interpretation of the numerical predicates and refer to such formulas as Arb-invariant first-order.

Our main result shows a Gaifman locality theorem: two tuples of a structure with n elements, having the same neighborhood up to distance (log n) ω(1), cannot be distinguished by Arb-invariant first-order formulas. When restricting attention to word structures, we can achieve the same quantitative strength for Hanf locality. In both cases we show that our bounds are tight.

Our proof exploits the close connection between Arb-invariant first-order formulas and the complexity class AC0, and hinges on the tight lower bounds for parity on constant-depth circuits.

Keywords

Linear Order Regular Language Relation Symbol Neighborhood Type Unary Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ajtai, M.: Σ1 1-formulae on finite structures. APAL 24(1), 1–48 (1983)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Benedikt, M., Segoufin, L.: Towards a characterization of order-invariant queries over tame structures. JSL 74(1), 168–186 (2009)zbMATHGoogle Scholar
  3. 3.
    Dawar, A., Grohe, M., Kreutzer, S.: Locally excluding a minor. In: Proc. of LICS (2007)Google Scholar
  4. 4.
    Durand, A., Lautemann, C., More, M.: Counting results in weak formalisms. In: Circuits, Logic, and Games. No. 06451 in Dagstuhl Seminar Proc. (2007)Google Scholar
  5. 5.
    Dvorak, Z., Král, D., Thomas, R.: Deciding first-order properties for sparse graphs. In: Proc. of FOCS (2010)Google Scholar
  6. 6.
    Furst, M., Saxe, J., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. TOCS 17(1), 13–27 (1984)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Grohe, M.: Fixed-point definability and polynomial time. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 20–23. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Grohe, M., Schwentick, T.: Locality of order-invariant first-order formulas. ACM TOCL 1(1), 112–130 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Håstad, J.: Computational limitations for small-depth circuits. Ph.D. thesis, MIT (1986)Google Scholar
  10. 10.
    Immerman, N.: Relational queries computable in polynomial time. Information and Control 68(1-3), 86–104 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Immerman, N.: Languages that capture complexity classes. SICOMP 16(4), 760–778 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)CrossRefzbMATHGoogle Scholar
  13. 13.
    Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, Fourier transform, and learnability. JACM 40(3), 620 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Makowsky, J.A.: Invariant definability and P/poly. In: Gottlob, G., Grandjean, E., Seyr, K. (eds.) CSL 1998. LNCS, vol. 1584, pp. 142–158. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Schweikardt, N., Segoufin, L.: Addition-invariant FO and regularity. In: Proc. of LICS (2010)Google Scholar
  16. 16.
    Vardi, M.: The complexity of relational query languages. In: Proc. of STOC (1982)Google Scholar
  17. 17.
    Yao, A.: Separating the polynomial-time hierarchy by oracles. In: Proc. of FOCS (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Matthew Anderson
    • 1
  • Dieter van Melkebeek
    • 1
  • Nicole Schweikardt
    • 2
  • Luc Segoufin
    • 3
  1. 1.University of Wisconsin - MadisonUSA
  2. 2.Goethe-Universität Frankfurt am MainGermany
  3. 3.INRIA and ENS-Cachan, LSVFrance

Personalised recommendations