Generic Expression Hardness Results for Primitive Positive Formula Comparison

  • Simone Bova
  • Hubie Chen
  • Matthew Valeriote
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6756)


We study the expression complexity of two basic problems involving the comparison of primitive positive formulas: equivalence and containment. We give two generic hardness results for the studied problems, and discuss evidence that they are optimal and yield, for each of the problems, a complexity trichotomy.


Relational Structure Constraint Satisfaction Problem Unary Type Atomic Formula Congruence Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atserias, A.: Conjunctive Query Evaluation by Search-Tree Revisited. Theoretical Computer Science 371(3), 155–168 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Barto, L.: CD implies NU (2010) (manuscript)Google Scholar
  3. 3.
    Barto, L., Kozik, M.: Constraint satisfaction problems of bounded width. In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, pp. 595–603 (2009)Google Scholar
  4. 4.
    Berman, J., Idziak, P., Marković, P., McKenzie, R., Valeriote, M., Willard, R.: Varieties with Few Subalgebras of Powers. Transactions of the American Mathematical Society 362(3), 1445–1473 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bodnarchuk, V., Kaluzhnin, L., Kotov, V., Romov, B.: Galois Theory for Post Algebras. I, II. Cybernetics 5, 243–252, 531–539 (1969)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bova, S., Chen, H., Valeriote, M.: On the Expression Complexity of Equivalence and Isomorphism of Primitive Positive Formulas. Theory of Computing Systems,, doi:10.1007/s00224-010-9302-7Google Scholar
  7. 7.
    Bulatov, A., Jeavons, P., Krokhin, A.: Classifying the Complexity of Constraints using Finite Algebras. SIAM Journal on Computing 34(3), 720–742 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Bulatov, A.: Tractable Conservative Constraint Satisfaction Problems. In: Proceedings of 18th IEEE Symposium on Logic in Computer Science (LICS 2003), pp. 321–330 (2003)Google Scholar
  9. 9.
    Bulatov, A.: A Dichotomy Theorem for Constraint Satisfaction Problems on a 3-element Set. Journal of the ACM 53 (2006)Google Scholar
  10. 10.
    Bulatov, A., Valeriote, M.: Recent Results on the Algebraic Approach to the CSP. In: Creignou, N., Kolaitis, P.G., Vollmer, H. (eds.) Complexity of Constraints. LNCS, vol. 5250, pp. 68–92. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Freese, R., McKenzie, R.: Commutator Theory for Congruence Modular Varieties. London Mathematical Society Lecture Note Series, vol. 125. Cambridge University Press, Cambridge (1987)zbMATHGoogle Scholar
  12. 12.
    Geiger, D.: Closed Systems of Functions and Predicates. Pacific Journal of Mathematics 27, 95–100 (1968)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Hobby, D., McKenzie, R.: The Structure of Finite Algebras. Contemporary Mathematics, vol. 76. American Mathematical Society, Providence (1988); Revised edition: 1996zbMATHGoogle Scholar
  14. 14.
    Idziak, P., Markovic, P., McKenzie, R., Valeriote, M., Willard, R.: Tractability and Learnability Arising from Algebras with Few Subpowers. In: Proceedings of the 22nd Annual IEEE Symposium on Logic in Computer Science, LICS (2007)Google Scholar
  15. 15.
    Hunt III, H.B., Rosenkrantz, D.J., Bloniarz, P.A.: On the Computational Complexity of Algebra on Lattices. SIAM Journal on Computing 16(1), 129–148 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Kearnes, K., Kiss, E., Valeriote, M.: Minimal Sets and Varieties. Transactions of the American Mathematical Society 350(1), 1–41 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Kolaitis, P., Vardi, M.: Conjunctive-Query Containment and Constraint Satisfaction. Journal of Computer and System Sciences 61, 302–332 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Papadimitriou, C., Yannakakis, M.: On the Complexity of Database Queries. Journal of Computer and System Sciences 58(3), 407–427 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Vardi, M.: The Complexity of Relational Query Languages. In: Proceedings of the 18th Annual ACM Symposium on Theory of Computing, STOC (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Simone Bova
    • 1
  • Hubie Chen
    • 2
  • Matthew Valeriote
    • 3
  1. 1.Department of MathematicsVanderbilt UniversityNashvilleUSA
  2. 2.Departament de Tecnologies de la Informació i les ComunicacionsUniversitat Pompeu FabraBarcelonaSpain
  3. 3.Department of Mathematics & StatisticsMcMaster UniversityHamiltonCanada

Personalised recommendations