Probabilistic Bisimulation and Simulation Algorithms by Abstract Interpretation

  • Silvia Crafa
  • Francesco Ranzato
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6756)


We show how bisimulation equivalence and simulation preorder on probabilistic LTSs (PLTSs), namely the main behavioural relations on probabilistic nondeterministic processes, can be characterized by abstract interpretation. Both bisimulation and simulation can be obtained as completions of partitions and preorders, viewed as abstract domains, w.r.t. a pair of concrete functions that encode a PLTS. As a consequence, this approach provides a general framework for designing algorithms for computing bisimulation and simulation on PLTSs. Notably, (i) we show that the standard bisimulation algorithm by Baier et al. can be viewed as an instance of such a framework and (ii) we design a new efficient simulation algorithm that improves the state of the art.


Simulation Algorithm Abstract Interpretation Probabilistic Process Abstract Domain Complete Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baier, C., Engelen, B., Majster-Cederbaum, M.: Deciding bisimilarity and similarity for probabilistic processes. J. Comp. Syst. Sci. 60, 187–231 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proc. 4th ACM POPL, pp. 238–252 (1977)Google Scholar
  3. 3.
    Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Proc. 6th ACM POPL, pp. 269–282 (1979)Google Scholar
  4. 4.
    Giacobazzi, R., Quintarelli, E.: Incompleteness, counterexamples, and refinements in abstract model-checking. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 356–373. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    van Glabbeek, R.J., Smolka, S., Steffen, B., Tofts, C.: Reactive, generative and stratified models for probabilistic processes. In: Proc. IEEE LICS 1990, pp. 130–141 (1990)Google Scholar
  6. 6.
    Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infinite graphs. In: Proc. 36th FOCS, pp. 453–462 (1995)Google Scholar
  7. 7.
    Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information and Computation 94(1), 1–28 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput. 16(6), 973–989 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Parma, A., Segala, R.: Logical characterizations of bisimulations for discrete probabilistic systems. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 287–301. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Ranzato, F., Tapparo, F.: A new efficient simulation equivalence algorithm. In: Proc. IEEE LICS 2007, pp. 171–180 (2007)Google Scholar
  11. 11.
    Ranzato, F., Tapparo, F.: Generalized strong preservation by abstract interpretation. J. Logic and Computation 17(1), 157–197 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nordic J. of Computing 2(2), 250–273 (1995)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Zhang, L., Hermanns, H., Eisenbrand, F., Jansen, D.N.: Flow faster: efficient decision algorithms for probabilistic simulations. Logical Methods in Computer Science 4(4) (2008)Google Scholar
  14. 14.
    Zhang, L.: A space-efficient probabilistic simulation algorithm. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 248–263. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Silvia Crafa
    • 1
  • Francesco Ranzato
    • 1
  1. 1.University of PadovaItaly

Personalised recommendations