Automata-Based CSL Model Checking

  • Lijun Zhang
  • David N. Jansen
  • Flemming Nielson
  • Holger Hermanns
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6756)

Abstract

For continuous-time Markov chains, the model-checking problem with respect to continuous-time stochastic logic (CSL) has been introduced and shown to be decidable by Aziz, Sanwal, Singhal and Brayton in 1996. The presented decision procedure, however, has exponential complexity. In this paper, we propose an effective approximation algorithm for full CSL.

The key to our method is the notion of stratified CTMCs with respect to the CSL property to be checked. We present a measure-preservation theorem allowing us to reduce the problem to a transient analysis on stratified CTMCs. The corresponding probability can then be approximated in polynomial time (using uniformization). This makes the present work the centerpiece of a broadly applicable full CSL model checker.

Recently, the decision algorithm by Aziz et al. was shown to be incorrect in general. In fact, it works only for stratified CTMCs. As an additional contribution, our measure-preservation theorem can be used to ensure the decidability for general CTMCs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying continuous time Markov chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  2. 2.
    Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continous-time Markov chains. ACM Trans. Comput. Log. 1(1), 162–170 (2000)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Baier, C., Cloth, L., Haverkort, B.R., Kuntz, M., Siegle, M.: Model checking Markov chains with actions and state labels. IEEE Trans. Softw. Eng. 33(4), 209–224 (2007)CrossRefGoogle Scholar
  4. 4.
    Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)CrossRefMATHGoogle Scholar
  5. 5.
    Ballarini, P., Mardare, R., Mura, I.: Analysing biochemical oscillation through probabilistic model checking. Electr. Notes Theor. Comp. Sc. 229(1), 3–19 (2009)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Chen, T., Han, T., Katoen, J.P., Mereacre, A.: Quantitative model checking of continuous-time Markov chains against timed automata specifications. In: Twenty-fourth Annual IEEE Symposium on Logic in Computer Science, pp. 309–318. IEEE Comp. Soc., Los Alamitos (2009)Google Scholar
  7. 7.
    Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic properties with CSLTA. IEEE Trans. Software Eng. 35(2), 224–240 (2009)CrossRefGoogle Scholar
  8. 8.
    Grassmann, W.K.: Finding transient solutions in Markovian event systems through randomization. In: Stewart, W.J. (ed.) Numerical Solution of Markov Chains. Probability, Pure and Applied, vol. 8, pp. 357–371. Marcel Dekker, New York (1991)Google Scholar
  9. 9.
    Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: a tool for automatic verification of probabilistic systems. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Jansen, D.N.: Erratum to: Model-checking continuous-time Markov chains by Aziz et al. (February 2011), http://arxiv.org/abs/1102.2079v1
  11. 11.
    Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and outs of the probabilistic model checker MRMC. Performance Evaluation 68(2), 90–104 (2011)CrossRefGoogle Scholar
  12. 12.
    Safra, S.: On the complexity of ω-automata. In: 29th Ann. Symp. on Foundations of Computer Science, pp. 319–327. IEEE Comp. Soc., Los Alamitos (1988)Google Scholar
  13. 13.
    Spieler, D.: Model checking of oscillatory and noisy periodic behavior in Markovian population models. Master’s thesis, Saarland University, Saarbrücken (2009), http://alma.cs.uni-sb.de/data/david/mt.pdf
  14. 14.
    Stewart, W.J.: Introduction to the numerical solution of Markov chains. Princeton Univ. Pr., Princeton (1994)MATHGoogle Scholar
  15. 15.
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: Symposium on Logic in Computer Science, pp. 332–345. IEEE Comp. Soc., Los Alamitos (1986)Google Scholar
  16. 16.
    Zhang, L., Jansen, D.N., Nielson, F., Hermanns, H.: Automata-based CSL model checking (April 2011), http://arxiv.org/abs/1104.4983

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Lijun Zhang
    • 1
  • David N. Jansen
    • 2
  • Flemming Nielson
    • 1
  • Holger Hermanns
    • 3
  1. 1.DTU InformaticsTechnical University of DenmarkDenmark
  2. 2.Model-based system designRadboud UniversiteitNijmegenThe Netherlands
  3. 3.Computer ScienceSaarland UniversitySaarbrückenGermany

Personalised recommendations