Advertisement

An Introduction to Randomness Extractors

  • Ronen Shaltiel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6756)

Abstract

We give an introduction to the area of “randomness extraction” and survey the main concepts of this area: deterministic extractors, seeded extractors and multiple sources extractors. For each one we briefly discuss background, definitions, explicit constructions and applications.

Keywords

Explicit Construction Pseudorandom Generator Expander Graph Honest Party Disperser Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AB09]
    Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press, Cambridge (2009)zbMATHCrossRefGoogle Scholar
  2. [AKS87]
    Ajtai, M., Komlós, J., Szemerédi, E.: Deterministic simulation in logspace. In: STOC, pp. 132–140 (1987)Google Scholar
  3. [Alo98]
    Alon, N.: The shannon capacity of a union. Combinatorica 18(3), 301–310 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  4. [BIW06]
    Barak, B., Impagliazzo, R., Wigderson, A.: Extracting randomness using few independent sources. SIAM J. Comput. 36(4), 1095–1118 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  5. [BKS+10]
    Barak, B., Kindler, G., Shaltiel, R., Sudakov, B., Wigderson, A.: Simulating independence: New constructions of condensers, ramsey graphs, dispersers, and extractors. J. ACM 57(4) (2010)Google Scholar
  6. [BKT04]
    Bourgain, J., Katz, N., Tao, T.: A sum-product estimate in finite fields, and applications. Geom. Funct. Anal. 14(1), 27–57 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  7. [Blu86]
    Blum, M.: Independent unbiased coin flips from a correlated biased source-a finite stae markov chain. Combinatorica 6(2), 97–108 (1986)zbMATHMathSciNetCrossRefGoogle Scholar
  8. [Bou05]
    Bourgain, J.: More on the sum-product phenomenon in prime fields and its applications. International Journal of Number Theory 1, 1–32 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  9. [Bou07]
    Bourgain, J.: On the construction of affine extractors. Geometric And Functional Analysis 17(1), 33–57 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  10. [BRSW06]
    Barak, B., Rao, A., Shaltiel, R., Wigderson, A.: 2-source dispersers for sub-polynomial entropy and ramsey graphs beating the frankl-wilson construction. In: STOC, pp. 671–680 (2006)Google Scholar
  11. [BSK09]
    Ben-Sasson, E., Kopparty, S.: Affine dispersers from subspace polynomials. In: STOC, pp. 65–74 (2009)Google Scholar
  12. [BSZ11]
    Ben-Sasson, E., Zewi, N.: From affine to two-source extractors via approximate duality. In: STOC (2011)Google Scholar
  13. [CG88]
    Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and probabilistic communication complexity. SIAM Journal on Computing 17(2), 230–261 (1988)zbMATHMathSciNetCrossRefGoogle Scholar
  14. [CGH+85]
    Chor, B., Goldreich, O., Håstad, J., Friedman, J., Rudich, S., Smolensky, R.: The bit extraction problem of t-resilient functions (preliminary version). In: FOCS, pp. 396–407 (1985)Google Scholar
  15. [CRVW02]
    Capalbo, M.R., Reingold, O., Vadhan, S.P., Wigderson, A.: Randomness conductors and constant-degree lossless expanders. In: STOC, pp. 659–668 (2002)Google Scholar
  16. [DG10]
    DeVos, M., Gabizon, A.: Simple affine extractors using dimension expansion. In: IEEE Conference on Computational Complexity, pp. 50–57 (2010)Google Scholar
  17. [DGW09]
    Dvir, Z., Gabizon, A., Wigderson, A.: Extractors and rank extractors for polynomial sources. Computational Complexity 18(1), 1–58 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  18. [DKSS09]
    Dvir, Z., Kopparty, S., Saraf, S., Sudan, M.: Extensions to the method of multiplicities, with applications to kakeya sets and mergers. In: FOCS, pp. 181–190 (2009)Google Scholar
  19. [Dvi09]
    Dvir, Z.: Extractors for varieties. In: IEEE Conference on Computational Complexity, pp. 102–113 (2009)Google Scholar
  20. [Eli72]
    Elias, P.: The efficient construction of an unbiased random sequence. Ann. Math. Statist. 43, 865–870 (1972)zbMATHCrossRefGoogle Scholar
  21. [FW81]
    Frankl, P., Wilson, R.M.: Intersection theorems with geometric consequences. Combinatorica 1(4), 357–368 (1981)zbMATHMathSciNetCrossRefGoogle Scholar
  22. [Gil98]
    Gillman, D.: A chernoff bound for random walks on expander graphs. SIAM J. Comput. 27(4), 1203–1220 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  23. [Gop06]
    Gopalan, P.: Constructing ramsey graphs from boolean function representations. In: IEEE Conference on Computational Complexity, pp. 115–128 (2006)Google Scholar
  24. [GR08]
    Gabizon, A., Raz, R.: Deterministic extractors for affine sources over large fields. Combinatorica 28(4), 415–440 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  25. [Gro00]
    Grolmusz, V.: Superpolynomial size set-systems with restricted intersections mod 6 and explicit ramsey graphs. Combinatorica 20(1), 71–86 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  26. [GRS06]
    Gabizon, A., Raz, R., Shaltiel, R.: Deterministic extractors for bit-fixing sources by obtaining an independent seed. SIAM J. Comput. 36(4), 1072–1094 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  27. [GS08]
    Gabizon, A., Shaltiel, R.: Increasing the output length of zero-error dispersers. In: APPROX-RANDOM, pp. 430–443 (2008)Google Scholar
  28. [Gur07]
    Guruswami, V.: Algorithmic results in list decoding. Foundations and Trends in Theoretical Computer Science 2(2) (2007)Google Scholar
  29. [GUV09]
    Guruswami, V., Umans, C., Vadhan, S.P.: Unbalanced expanders and randomness extractors from parvaresh–vardy codes. J. ACM 56(4) (2009)Google Scholar
  30. [HLW06]
    Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull. Amer. Math. Soc. 43, 439–561 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  31. [Kah06]
    Kahale, N.: Eigenvalues and expansion of regular graphs. J. Assoc. Comput. Mach. 42, 1091–1106 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  32. [KLR09]
    Kalai, Y.T., Li, X., Rao, A.: 2-source extractors under computational assumptions and cryptography with defective randomness. In: FOCS, pp. 617–626 (2009)Google Scholar
  33. [KLRZ08]
    Kalai, Y.T., Li, X., Rao, A., Zuckerman, D.: Network extractor protocols. In: FOCS, pp. 654–663 (2008)Google Scholar
  34. [KM05]
    König, R., Maurer, U.M.: Generalized strong extractors and deterministic privacy amplification. In: IMA Int. Conf., pp. 322–339 (2005)Google Scholar
  35. [Kon03]
    Konyagin, S.V.: A sum-product estimate in fields of prime order. Arxiv technical report (2003), http://arxiv.org/abs/math.NT/0304217
  36. [KRVZ11]
    Kamp, J., Rao, A., Vadhan, S.P., Zuckerman, D.: Deterministic extractors for small-space sources. J. Comput. Syst. Sci. 77(1), 191–220 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  37. [KvMS09]
    Kinne, J., van Melkebeek, D., Shaltiel, R.: Pseudorandom generators and typically-correct derandomization. In: APPROX-RANDOM, pp. 574–587 (2009)Google Scholar
  38. [KZ07]
    Kamp, J., Zuckerman, D.: Deterministic extractors for bit-fixing sources and exposure-resilient cryptography. SIAM J. Comput. 36(5), 1231–1247 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  39. [Li11a]
    Li, X.: Improved constructions of three source extractors. In: IEEE Conference on Computational Complexity (2011)Google Scholar
  40. [Li11b]
    Li, X.: A new approach to affine extractors and dispersers. In: IEEE Conference on Computational Complexity (2011)Google Scholar
  41. [LRVW03]
    Lu, C.-J., Reingold, O., Vadhan, S.P., Wigderson, A.: Extractors: optimal up to constant factors. In: STOC, pp. 602–611 (2003)Google Scholar
  42. [NTS99]
    Nisan, N., Ta-Shma, A.: Extracting randomness: A survey and new constructions. J. Comput. Syst. Sci. 58(1), 148–173 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  43. [NW94]
    Nisan, N., Wigderson, A.: Hardness vs randomness. J. Comput. Syst. Sci. 49(2), 149–167 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  44. [NZ96]
    Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst. Sci. 52(1), 43–52 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  45. [Per92]
    Peres, Y.: Iterating von neumann’s procedure for extracting random bits. Ann. Statist. 20, 590–597 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  46. [PV05]
    Parvaresh, F., Vardy, A.: Correcting errors beyond the guruswami-sudan radius in polynomial time. In: FOCS, pp. 285–294 (2005)Google Scholar
  47. [Rao07]
    Rao, A.: An exposition of bourgain’s 2-source extractor. Electronic Colloquium on Computational Complexity (ECCC) 14(034) (2007)Google Scholar
  48. [Rao09a]
    Rao, A.: Extractors for a constant number of polynomially small min-entropy independent sources. SIAM J. Comput. 39(1), 168–194 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  49. [Rao09b]
    Rao, A.: Extractors for low-weight affine sources. In: IEEE Conference on Computational Complexity, pp. 95–101 (2009)Google Scholar
  50. [Raz05]
    Raz, R.: Extractors with weak random seeds. In: STOC, pp. 11–20 (2005)Google Scholar
  51. [RRV02]
    Raz, R., Reingold, O., Vadhan, S.P.: Extracting all the randomness and reducing the error in trevisan’s extractors. J. Comput. Syst. Sci. 65(1), 97–128 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  52. [RTS00]
    Radhakrishnan, J., Ta-Shma, A.: Bounds for dispersers, extractors, and depth-two superconcentrators. SIAM Journal on Discrete Mathematics 13(1), 2–24 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  53. [RVW00]
    Reingold, O., Vadhan, S.P., Wigderson, A.: Entropy waves, the zig-zag graph product, and new constant-degree expanders and extractors. In: FOCS, pp. 3–13 (2000)Google Scholar
  54. [RZ08]
    Rao, A., Zuckerman, D.: Extractors for three uneven-length sources. In: APPROX-RANDOM, pp. 557–570 (2008)Google Scholar
  55. [Sha02]
    Shaltiel, R.: Recent developments in explicit constructions of extractors. Bulletin of the EATCS 77, 67–95 (2002); Special issue on cryptographyzbMATHMathSciNetGoogle Scholar
  56. [Sha08]
    Shaltiel, R.: How to get more mileage from randomness extractors. Random Struct. Algorithms 33(2), 157–186 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  57. [Sha09]
    Shaltiel, R.: Weak derandomization of weak algorithms: Explicit versions of yao’s lemma. In: IEEE Conference on Computational Complexity, pp. 114–125 (2009)Google Scholar
  58. [Sha11]
    Shaltiel, R.: Dispersers for affine sources with sub-polynomial entropy (unpublished, 2011)Google Scholar
  59. [SSZ98]
    Saks, M.E., Srinivasan, A., Zhou, S.: Explicit or-dispersers with polylogarithmic degree. J. ACM 45(1), 123–154 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  60. [SU05]
    Shaltiel, R., Umans, C.: Simple extractors for all min-entropies and a new pseudorandom generator. J. ACM 52(2), 172–216 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  61. [SV86]
    Santha, M., Vazirani, U.V.: Generating quasi-random sequences from semi-random sources. J. Comput. Syst. Sci. 33(1), 75–87 (1986)zbMATHCrossRefGoogle Scholar
  62. [Tre01]
    Trevisan, L.: Extractors and pseudorandom generators. J. ACM 48(4), 860–879 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  63. [TS02]
    Ta-Shma, A.: Almost optimal dispersers. Combinatorica 22(1), 123–145 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  64. [TSUZ07]
    Ta-Shma, A., Umans, C., Zuckerman, D.: Lossless condensers, unbalanced expanders, and extractors. Combinatorica 27(2), 213–240 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  65. [TSZ04]
    Ta-Shma, A., Zuckerman, D.: Extractor codes. IEEE Transactions on Information Theory 50(12), 3015–3025 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  66. [TSZS06]
    Ta-Shma, A., Zuckerman, D., Safra, S.: Extractors from reed-muller codes. J. Comput. Syst. Sci. 72(5), 786–812 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  67. [TV00]
    Trevisan, L., Vadhan, S.P.: Extracting randomness from samplable distributions. In: FOCS, pp. 32–42 (2000)Google Scholar
  68. [Vad07]
    Vadhan, S.P.: The unified theory of pseudorandomness. SIGACT News 38(3), 39–54 (2007)CrossRefGoogle Scholar
  69. [Vaz87]
    Vazirani, U.V.: Efficiency considerations in using semi-random sources (extended abstract). In: STOC, pp. 160–168 (1987)Google Scholar
  70. [vN51]
    von Neumann, J.: Various techniques used in connection with random digits. Applied Math Series 12, 36–38 (1951)Google Scholar
  71. [VV85]
    Vazirani, U.V., Vazirani, V.V.: Random polynomial time is equal to slightly-random polynomial time. In: FOCS, pp. 417–428 (1985)Google Scholar
  72. [WZ99]
    Wigderson, A., Zuckerman, D.: Expanders that beat the eigenvalue bound: Explicit construction and applications. Combinatorica 19(1), 125–138 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  73. [Yeh10]
    Yehudayoff, A.: Affine extractors over prime fields (2010) (manuscript)Google Scholar
  74. [Zuc97]
    Zuckerman, D.: Randomness-optimal oblivious sampling. Random Struct. Algorithms 11(4), 345–367 (1997)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ronen Shaltiel
    • 1
  1. 1.University of HaifaIsrael

Personalised recommendations