Advertisement

Emptiness and Universality Problems in Timed Automata with Positive Frequency

  • Nathalie Bertrand
  • Patricia Bouyer
  • Thomas Brihaye
  • Amélie Stainer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6756)

Abstract

The languages of infinite timed words accepted by timed automata are traditionally defined using Büchi-like conditions. These acceptance conditions focus on the set of locations visited infinitely often along a run, but completely ignore quantitative timing aspects. In this paper we propose a natural quantitative semantics for timed automata based on the so-called frequency, which measures the proportion of time spent in the accepting locations. We study various properties of timed languages accepted with positive frequency, and in particular the emptiness and universality problems.

Keywords

Model Check Acceptance Condition Positive Frequency Time Automaton Emptiness Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Degorre, A., Maler, O., Weiss, G.: On omega-languages defined by mean-payoff conditions. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 333–347. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 49–62. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Asarin, E., Degorre, A.: Volume and entropy of regular timed languages: Discretization approach. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 69–83. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Baier, C., Bertrand, N., Bouyer, P., Brihaye, T., Größer, M.: Almost-sure model checking of infinite paths in one-clock timed automata. In: Proc. 23rd Annual IEEE Symp. on Logic in Computer Science (LICS 2008), pp. 217–226. IEEE Computer Society Press, Los Alamitos (2008)CrossRefGoogle Scholar
  6. 6.
    Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J., Vaandrager, F.W.: Minimum-cost reachability for priced timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 147–161. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Bianco, A., Faella, M., Mogavero, F., Murano, A.: Quantitative fairness games. In: Proc. 8th Workshop on Quantitative Aspects of Programming Languages (QAPL 2010). ENTCS, vol. 28, pp. 48–63 (2010)Google Scholar
  8. 8.
    Bouyer, P., Brinksma, E., Larsen, K.G.: Optimal infinite scheduling for multi-priced timed automata. Formal Methods in System Design 32(1), 3–23 (2008)CrossRefzbMATHGoogle Scholar
  9. 9.
    Chatterjee, K., Doyen, L., Edelsbrunner, H., Henzinger, T.A., Rannou, P.: Mean-payoff automaton expressions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 269–283. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Transactions on Computational Logic 11(4) (2010)Google Scholar
  11. 11.
    Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification of real-time systems with discrete probability distributions. Theoretical Computer Science 282, 101–150 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Laroussinie, F., Markey, N., Schnoebelen, P.: Model checking timed automata with one or two clocks. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 387–401. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Ouaknine, J., Worrell, J.: On the decidability of Metric Temporal Logic. In: Proc. 20th Annual IEEE Symp. on Logic in Computer Science (LICS 2005), pp. 188–197. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  14. 14.
    Tracol, M., Baier, C., Größer, M.: Recurrence and transience for probabilistic automata. In: Proc. 29th IARCS Annual Conf. on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2009). LIPIcs, vol. 4, pp. 395–406. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nathalie Bertrand
    • 1
  • Patricia Bouyer
    • 2
  • Thomas Brihaye
    • 3
  • Amélie Stainer
    • 1
  1. 1.INRIA RennesFrance
  2. 2.LSV - CNRS & ENS CachanFrance
  3. 3.Université de MonsBelgium

Personalised recommendations