Advertisement

The Cost of Traveling between Languages

  • Michael Benedikt
  • Gabriele Puppis
  • Cristian Riveros
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6756)

Abstract

We show how to calculate the maximum number of edits per character needed to convert any string in one regular language to a string in another language. Our algorithm makes use of a local determinization procedure applicable to a subclass of distance automata. We then show how to calculate the same property when the editing needs to be done in streaming fashion, by a finite state transducer, using a reduction to mean-payoff games. We show that the optimal streaming editor can be produced in PTIME.

Keywords

Target Language Edit Distance Regular Language Edit Operation Simple Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benedikt, M., Puppis, G., Riveros, C.: Regular repair of specifications. In: LICS (2011)Google Scholar
  2. 2.
    Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. J. of Game Theory 8, 109–113 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Karmarkar, N.: A new polynomial-time algorithm for linear programming. In: STOC, pp. 302–311 (1984)Google Scholar
  4. 4.
    Konstantinidis, S.: Computing the edit distance of a regular language. Inf. and Comp. 205(9), 1307–1316 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Krob, D.: The equality problem for rational series with multiplicities in the tropical semiring is undecidable. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 101–112. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  6. 6.
    Matouek, J., Gärtner, B.: Understanding and Using Linear Programming (2006)Google Scholar
  7. 7.
    Mohri, M.: Finite-state transducers in language and speech processing. J. of Comp. Ling. 23(2), 269–311 (1997)MathSciNetGoogle Scholar
  8. 8.
    Mohri, M.: Edit-distance of weighted automata: general definitions and algorithms. J. of Found. of Comp. Sc. 14(6), 957–982 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Simon, I.: Recognizable sets with multiplicities in the tropical semiring. In: Koubek, V., Janiga, L., Chytil, M.P. (eds.) MFCS 1988. LNCS, vol. 324, pp. 107–120. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  10. 10.
    Wagner, R.A.: Order-n correction for regular languages. CACM 17(5), 265–268 (1974)CrossRefzbMATHGoogle Scholar
  11. 11.
    Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. JACM 21(1), 168–173 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor. Comput. Sci. 158, 343–359 (1996)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Michael Benedikt
    • 1
  • Gabriele Puppis
    • 1
  • Cristian Riveros
    • 1
  1. 1.Department of Computer ScienceOxford UniversityOxfordUK

Personalised recommendations