Advertisement

On the Capabilities of Grammars, Automata, and Transducers Controlled by Monoids

  • Georg Zetzsche
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6756)

Abstract

During recent decades, classical models in language theory have been extended by control mechanisms defined by monoids. We study which monoids cause the extensions of context-free grammars, finite automata, or finite state transducers to exceed the capacity of the original model. Furthermore, we investigate when, in the extended automata model, the nondeterministic variant differs from the deterministic one in capacity. We show that all these conditions are in fact equivalent and present an algebraic characterization. In particular, the open question of whether every language generated by a valence grammar over a finite monoid is context-free is provided with a positive answer.

Keywords

Linear Extension Regular Language Derivation Tree Left Inverse Valence Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups, vol. 1. American Mathematical Society, Providence (1961)zbMATHGoogle Scholar
  2. 2.
    Dassow, J., Turaev, S.: Petri net controlled grammars: the power of labeling and final markings. Romanian Journal of Information Science and Technology 12(2), 191–207 (2009)Google Scholar
  3. 3.
    Fernau, H., Stiebe, R.: Valence grammars with target sets. In: Words, Semigroups, and Transductions. World Scientific, Singapore (2001)Google Scholar
  4. 4.
    Fernau, H., Stiebe, R.: Sequential grammars and automata with valences. Theoretical Computer Science 276, 377–405 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Greibach, S.A.: Remarks on blind and partially blind one-way multicounter machines. Theoretical Computer Science 7(3), 311–324 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  7. 7.
    Ito, M., Martín-Vide, C., Mitrana, V.: Group weighted finite transducers. Acta Informatica 38, 117–129 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Kambites, M.: Formal languages and groups as memory. Communications in Algebra 37, 193–208 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Mitrana, V., Stiebe, R.: Extended finite automata over groups. Discrete Applied Mathematics 108(3), 287–300 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Ogden, W.: A helpful result for proving inherent ambiguity. Mathematical Systems Theory 2(3), 191–194 (1968)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Păun, G.: A new generative device: Valence grammars. Revue Roumaine de Mathématiques Pures et Appliquées 25, 911–924 (1980)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Render, E.: Rational Monoid and Semigroup Automata. PhD thesis, University of Manchester (2010)Google Scholar
  13. 13.
    Render, E., Kambites, M.: Rational subsets of polycyclic monoids and valence automata. Information and Computation 207(11), 1329–1339 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Render, E., Kambites, M.: Semigroup automata with rational initial and terminal sets. Theoretical Computer Science 411(7-9), 1004–1012 (2010)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Georg Zetzsche
    • 1
  1. 1.Fachbereich InformatikTechnische Universität KaiserslauternKaiserslauternGermany

Personalised recommendations