Isomorphism of Regular Trees and Words

  • Markus Lohrey
  • Christian Mathissen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6756)

Abstract

The complexity of the isomorphism problem for regular trees, regular linear orders, and regular words is analyzed. A tree is regular if it is isomorphic to the prefix order on a regular language. In case regular languages are represented by NFAs (DFAs), the isomorphism problem for regular trees turns out to be EXPTIME-complete (resp. P-complete). In case the input automata are acyclic NFAs (acyclic DFAs), the corresponding trees are (succinctly represented) finite trees, and the isomorphism problem turns out to be PSPACE-complete (resp. P-complete). A linear order is regular if it is isomorphic to the lexicographic order on a regular language. A polynomial time algorithm for the isomorphism problem for regular linear orders (and even regular words, which generalize the latter) given by DFAs is presented. This solves an open problem by Ésik and Bloom. A long version of this paper can be found in [18].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bárány, V., Grädel, E., Rubin, S.: Automata-based presentations of infinite structures. In: Finite and Algorithmic Model Theory. London Mathematical Society Lecture Notes Series, vol. 379. Cambridge University Press, Cambridge (to appear, 2011)Google Scholar
  2. 2.
    Bloom, S.L., Ésik, Z.: The equational theory of regular words. Inf. Comput. 197(1-2), 55–89 (2005)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bloom, S.L., Ésik, Z.: Algebraic linear orderings. Technical report, arXiv.org (2010), http://arxiv.org/abs/1002.1624
  4. 4.
    Caucal, D.: On infinite terms having a decidable monadic theory. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 165–176. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981)MATHMathSciNetGoogle Scholar
  6. 6.
    Courcelle, B.: Frontiers of infinite trees. ITA 12(4) (1978)Google Scholar
  7. 7.
    Courcelle, B.: The definability of equational graphs in monadic second-order logic. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372, pp. 207–221. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  8. 8.
    Ésik, Z.: Representing small ordinals by finite automata. In: Proc. DCFS 2010. EPTCS, vol. 31, pp. 78–87 (2010)Google Scholar
  9. 9.
    Ésik, Z.: An undecidable property of context-free linear orders. Inf. Process. Lett. 111(3), 107–109 (2011)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Gasieniec, L., Gibbons, A., Rytter, W.: Efficiency of fast parallel pattern searching in highly compressed texts. In: Kutyłowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 48–58. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Goldschlager, L.M.: The monotone and planar circuit value problems are log space complete for P. SIGACT News 9(2), 25–99 (1977)CrossRefMATHGoogle Scholar
  12. 12.
    Heilbrunner, S.: An algorithm for the solution of fixed-point equations for infinite words. ITA 14(2), 131–141 (1980)MATHMathSciNetGoogle Scholar
  13. 13.
    Jenner, B., Köbler, J., McKenzie, P., Torán, J.: Completeness results for graph isomorphism. J. Comput. Syst. Sci. 66(3), 549–566 (2003)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three problems of equivalence. Inf. Comput. 86(1) (1990)Google Scholar
  15. 15.
    Khoussainov, B., Nies, A., Rubin, S., Stephan, F.: Automatic structures: richness and limitations. Logical Methods in Computer Science 3(2), 18(electronic) (2007)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Kuske, D., Liu, J., Lohrey, M.: The isomorphism problem on classes of automatic structures with transitive relations. submitted for publication, extended version of a paper presented at LICS 2010 (2011)Google Scholar
  17. 17.
    Lifshits, Y.: Processing compressed texts: A tractability border. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 228–240. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Lohrey, M., Mathissen, C.: Isomorphism of regular trees and words. Technical report, arXiv.org (2011), http://arxiv.org/abs/1102.2782
  19. 19.
    Lindell, S.: A logspace algorithm for tree canonization (extended abstract). In: Proc. STOC 1992, pp. 400–404. ACM Press, New York (1992)Google Scholar
  20. 20.
    Plandowski, W.: Testing equivalence of morphisms on context-free languages. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 460–470. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  21. 21.
    Rosenstein, J.: Linear Ordering. Academic Press, London (1982)MATHGoogle Scholar
  22. 22.
    Rytter, W.: Grammar compression, LZ-encodings, and string algorithms with implicit input. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 15–27. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time (preliminary report). In: Proc. STOCS 1973, pp. 1–9. ACM Press, New York (1973)Google Scholar
  24. 24.
    Thomas, W.: On frontiers of regular trees. ITA 20(4), 371–381 (1986)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Markus Lohrey
    • 1
  • Christian Mathissen
    • 1
  1. 1.Institut für InformatikUniversität LeipzigGermany

Personalised recommendations