Constructing Differential Categories and Deconstructing Categories of Games

  • Jim Laird
  • Giulio Manzonetto
  • Guy McCusker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6756)


We present an abstract construction for building differential categories useful to model resource sensitive calculi, and we apply it to categories of games. In one instance, we recover a category previously used to give a fully abstract model of a nondeterministic imperative language. The construction exposes the differential structure already present in this model. A second instance corresponds to a new Cartesian differential category of games. We give a model of a Resource PCF in this category and show that it enjoys the finite definability property. Comparison with a relational semantics reveals that the latter also possesses this property and is fully abstract.


Operational Semantic Full Subcategory Monoidal Category Monoidal Structure Full Functor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramsky, S., McCusker, G.: Linearity, sharing and state: a fully abstract game semantics for Idealized Algol with active expressions. In: O’Hearn, P.W., Tennent, R.D. (eds.) Algol-like Languages, vol. 2, pp. 297–329. Birkhaüser, Basel (1997)CrossRefGoogle Scholar
  2. 2.
    Baillot, P., Danos, V., Ehrhard, T., Regnier, L.: Timeless games. In: Gottlob, G., Grandjean, E., Seyr, K. (eds.) CSL 1998. LNCS, vol. 1584, pp. 56–77. Springer, Heidelberg (1999)Google Scholar
  3. 3.
    Blute, R.F., Cockett, J.R.B., Seely, R.A.G.: Differential categories. Mathematical Structures in Comp. Sci. 16, 1049–1083 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Blute, R.F., Cockett, J.R.B., Seely, R.A.G.: Cartesian differential categories. Theory and Applications of Categories 22(23), 622–672 (2009)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Bucciarelli, A., Ehrhard, T., Manzonetto, G.: Categorical models for simply typed resource calculi. ENTCS 265, 213–230 (2010); Proc. of MFPS 2010zbMATHMathSciNetGoogle Scholar
  6. 6.
    Ehrhard, T., Regnier, L.: The differential lambda-calculus. Theor. Comput. Sci. 309, 1–41 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Harmer, R.: Games and full abstraction for nondeterministic languages. PhD thesis, University of London (1999)Google Scholar
  8. 8.
    Harmer, R., McCusker, G.: A fully abstract game semantics for finite nondeterminism. In: LICS 1999, pp. 422–430 (1999)Google Scholar
  9. 9.
    Mac Lane, S.: Categories for the working mathematician. Springer, Berlin (1971)CrossRefzbMATHGoogle Scholar
  10. 10.
    McCusker, G.: Games and full abstraction for a functional metalanguage with recursive types. Distinguished Dissertations in Comp. Sci. Springer, Heidelberg (1998)CrossRefzbMATHGoogle Scholar
  11. 11.
    Melliès, P.-A., Tabareau, N., Tasson, C.: An explicit formula for the free exponential modality of linear logic. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 247–260. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Melliès, P.-A.: Asynchronous games 2: the true concurrency of innocence. Theor. Comput. Sci. 358, 200–228 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Pagani, M., Tranquilli, P.: Parallel reduction in resource lambda-calculus. In: Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 226–242. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jim Laird
    • 1
  • Giulio Manzonetto
    • 2
  • Guy McCusker
    • 1
  1. 1.Department of Computer ScienceUniversity of BathBathUK
  2. 2.Intelligent SystemsRadboud UniversityNijmegenThe Netherlands

Personalised recommendations