Advertisement

Relating Computational Effects by ⊤ ⊤-Lifting

  • Shin-ya Katsumata
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6756)

Abstract

We consider the problem of establishing a relationship between two interpretations of base type terms of a λ c -calculus with algebraic operations. We show that the given relationship holds if it satisfies a set of natural conditions. We apply this result to comparing interpretations of new name creation by two monads: Stark’s new name creation monad [25] and a global counter monad.

Keywords

Partial Order Base Type Logical Relation Small Product Algebraic Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benton, N., Hughes, J., Moggi, E.: Monads and effects. In: Barthe, G., Dybjer, P., Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 42–122. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Filinski, A.: Representing monads. In: Proc. POPL 1994, pp. 446–457 (1994)Google Scholar
  3. 3.
    Filinski, A.: Controlling Effects. PhD thesis, Carnegie Mellon University (1996)Google Scholar
  4. 4.
    Filinski, A.: Representing layered monads. In: Proc. POPL 1999, pp. 175–188 (1999)Google Scholar
  5. 5.
    Filinski, A.: On the relations between monadic semantics. Theor. Comput. Sci. 375(1-3), 41–75 (2007)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Filinski, A., Støvring, K.: Inductive reasoning about effectful data types. In: Hinze, R., Ramsey, N. (eds.) ICFP, pp. 97–110. ACM, New York (2007)CrossRefGoogle Scholar
  7. 7.
    Girard, J.-Y.: Linear logic. Theor. Comp. Sci. 50, 1–102 (1987)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Hasegawa, M., Kakutani, Y.: Axioms for recursion in call-by-value. Higher-Order and Symbolic Computation 15(2-3), 235–264 (2002)CrossRefMATHGoogle Scholar
  9. 9.
    Hermida, C.: Fibrations, Logical Predicates and Indeterminants. PhD thesis, University of Edinburgh (1993)Google Scholar
  10. 10.
    Jacobs, B.: Categorical Logic and Type Theory. Elsevier, Amsterdam (1999)MATHGoogle Scholar
  11. 11.
    Katsumata, S.: A semantic formulation of ⊤ ⊤-lifting and logical predicates for computational metalanguage. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 87–102. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Katsumata, S.: A characterisation of lambda definability with sums via ⊤ ⊤-closure operators. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 278–292. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Larrecq, J.-G., Lasota, S., Nowak, D.: Logical relations for monadic types. Math. Struct. in Comp. Science 18, 1169–1217 (2008)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Lindley, S.: Normalisation by Evaluation in the Compilation of Typed Functional Programming Languages. PhD thesis, University of Edinburgh (2004)Google Scholar
  15. 15.
    Lindley, S., Stark, I.: Reducibility and ⊤ ⊤-lifting for computation types. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 262–277. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Melliès, P.-A., Vouillon, J.: Recursive polymorphic types and parametricity in an operational framework. In: LICS, pp. 82–91. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  17. 17.
    Mitchell, J.: Representation independence and data abstraction. In: Proc. POPL 1986, pp. 263–276 (1986)Google Scholar
  18. 18.
    Mitchell, J.: Foundations for Programming Languages. MIT Press, Cambridge (1996)Google Scholar
  19. 19.
    Mitchell, J., Scedrov, A.: Notes on sconing and relators. In: Martini, S., Börger, E., Kleine Büning, H., Jäger, G., Richter, M.M. (eds.) CSL 1992. LNCS, vol. 702, pp. 352–378. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  20. 20.
    Parigot, M.: Proofs of strong normalisation for second order classical natural deduction. Journal of Symbolic Logic 62(4), 1461–1479 (1997)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Pitts, A.: Parametric polymorphism and operational equivalence. Mathematical Structures in Computer Science 10(3), 321–359 (2000)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Plotkin, G., Power, J.: Semantics for algebraic operations. Electr. Notes Theor. Comput. Sci. 45 (2001)Google Scholar
  23. 23.
    Plotkin, G.D., Pretnar, M.: Handlers of algebraic effects. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 80–94. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Simpson, A., Plotkin, G.: Complete axioms for categorical fixed-point operators. In: LICS, pp. 30–41 (2000)Google Scholar
  25. 25.
    Stark, I.: Categorical models for local names. Lisp and Symbolic Computation 9(1), 77–107 (1996)CrossRefGoogle Scholar
  26. 26.
    Stark, I.: A fully abstract domain model for the π-calculus. In: Proc. LICS 1996, pp. 36–42. IEEE, Los Alamitos (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Shin-ya Katsumata
    • 1
  1. 1.Research Institute for Mathematical SciencesKyoto UniversityKyotoJapan

Personalised recommendations