Relating Computational Effects by ⊤ ⊤-Lifting

  • Shin-ya Katsumata
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6756)


We consider the problem of establishing a relationship between two interpretations of base type terms of a λ c -calculus with algebraic operations. We show that the given relationship holds if it satisfies a set of natural conditions. We apply this result to comparing interpretations of new name creation by two monads: Stark’s new name creation monad [25] and a global counter monad.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benton, N., Hughes, J., Moggi, E.: Monads and effects. In: Barthe, G., Dybjer, P., Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 42–122. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Filinski, A.: Representing monads. In: Proc. POPL 1994, pp. 446–457 (1994)Google Scholar
  3. 3.
    Filinski, A.: Controlling Effects. PhD thesis, Carnegie Mellon University (1996)Google Scholar
  4. 4.
    Filinski, A.: Representing layered monads. In: Proc. POPL 1999, pp. 175–188 (1999)Google Scholar
  5. 5.
    Filinski, A.: On the relations between monadic semantics. Theor. Comput. Sci. 375(1-3), 41–75 (2007)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Filinski, A., Støvring, K.: Inductive reasoning about effectful data types. In: Hinze, R., Ramsey, N. (eds.) ICFP, pp. 97–110. ACM, New York (2007)CrossRefGoogle Scholar
  7. 7.
    Girard, J.-Y.: Linear logic. Theor. Comp. Sci. 50, 1–102 (1987)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Hasegawa, M., Kakutani, Y.: Axioms for recursion in call-by-value. Higher-Order and Symbolic Computation 15(2-3), 235–264 (2002)CrossRefMATHGoogle Scholar
  9. 9.
    Hermida, C.: Fibrations, Logical Predicates and Indeterminants. PhD thesis, University of Edinburgh (1993)Google Scholar
  10. 10.
    Jacobs, B.: Categorical Logic and Type Theory. Elsevier, Amsterdam (1999)MATHGoogle Scholar
  11. 11.
    Katsumata, S.: A semantic formulation of ⊤ ⊤-lifting and logical predicates for computational metalanguage. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 87–102. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Katsumata, S.: A characterisation of lambda definability with sums via ⊤ ⊤-closure operators. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 278–292. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Larrecq, J.-G., Lasota, S., Nowak, D.: Logical relations for monadic types. Math. Struct. in Comp. Science 18, 1169–1217 (2008)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Lindley, S.: Normalisation by Evaluation in the Compilation of Typed Functional Programming Languages. PhD thesis, University of Edinburgh (2004)Google Scholar
  15. 15.
    Lindley, S., Stark, I.: Reducibility and ⊤ ⊤-lifting for computation types. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 262–277. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Melliès, P.-A., Vouillon, J.: Recursive polymorphic types and parametricity in an operational framework. In: LICS, pp. 82–91. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  17. 17.
    Mitchell, J.: Representation independence and data abstraction. In: Proc. POPL 1986, pp. 263–276 (1986)Google Scholar
  18. 18.
    Mitchell, J.: Foundations for Programming Languages. MIT Press, Cambridge (1996)Google Scholar
  19. 19.
    Mitchell, J., Scedrov, A.: Notes on sconing and relators. In: Martini, S., Börger, E., Kleine Büning, H., Jäger, G., Richter, M.M. (eds.) CSL 1992. LNCS, vol. 702, pp. 352–378. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  20. 20.
    Parigot, M.: Proofs of strong normalisation for second order classical natural deduction. Journal of Symbolic Logic 62(4), 1461–1479 (1997)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Pitts, A.: Parametric polymorphism and operational equivalence. Mathematical Structures in Computer Science 10(3), 321–359 (2000)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Plotkin, G., Power, J.: Semantics for algebraic operations. Electr. Notes Theor. Comput. Sci. 45 (2001)Google Scholar
  23. 23.
    Plotkin, G.D., Pretnar, M.: Handlers of algebraic effects. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 80–94. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Simpson, A., Plotkin, G.: Complete axioms for categorical fixed-point operators. In: LICS, pp. 30–41 (2000)Google Scholar
  25. 25.
    Stark, I.: Categorical models for local names. Lisp and Symbolic Computation 9(1), 77–107 (1996)CrossRefGoogle Scholar
  26. 26.
    Stark, I.: A fully abstract domain model for the π-calculus. In: Proc. LICS 1996, pp. 36–42. IEEE, Los Alamitos (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Shin-ya Katsumata
    • 1
  1. 1.Research Institute for Mathematical SciencesKyoto UniversityKyotoJapan

Personalised recommendations