Krivine Machines and Higher-Order Schemes

  • S. Salvati
  • I. Walukiewicz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6756)


We propose a new approach to analysing higher-order recursive schemes. Many results in the literature use automata models generalising pushdown automata, most notably higher-order pushdown automata with collapse (CPDA). Instead, we propose to use the Krivine machine model. Compared to CPDA, this model is closer to lambdacalculus, and incorporates nicely many invariants of computations, as for example the typing information. The usefulness of the proposed approach is demonstrated with new proofs of two central results in the field: the decidability of the local and global model checking problems for higher-order schemes with respect to the mu-calculus.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AdMO05]
    Aehlig, K., de Miranda, J.G., Ong, C.-H.L.: Safety is not a restriction at level 2 for string languages. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 490–504. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. [BCOS10]
    Broadbent, C., Carayol, A., Ong, L., Serre, O.: Recursion schemes and logical reflection. In: LICS, pp. 120–129 (2010)Google Scholar
  3. [BO09]
    Broadbent, C., Ong, C.-H.L.: On global model checking trees generated by higher-order recursion schemes. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 107–121. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. [CHM+08]
    Carayol, A., Hague, M., Meyer, A., Ong, L., Serre, O.: Winning regions of higher-order pushdown games. In: LICS, Pittsburgh, United States, pp. 193–204 (2008)Google Scholar
  5. [CR58]
    Curry, H.B., Feys, R.: Combinatory Logic, vol. 1. North-Holland Publishing Co., Amsterdam (1958)MATHGoogle Scholar
  6. [Dam82]
    Damm, W.: The IO- and OI-hierarchies. Theoretical Computer Science 20, 95–207 (1982)CrossRefMATHMathSciNetGoogle Scholar
  7. [DF80]
    Damm, W., Fehr, E.: A schematalogical approach to the alalysis of the procedure concept in Algol-languages. In: CLAAP, vol. 1, pp. 130–134. Université de Lille (1980)Google Scholar
  8. [dM06]
    de Miranda, J.: Structures generated by Higher-Order Grammars and the Safety Constraint. PhD thesis, Oxford University (2006)Google Scholar
  9. [HMOS08]
    Hague, M., Murawski, A.S., Ong, C.-H.L., Serre, O.: Collapsible pushdown automata and recursion schemes. In: LICS, pp. 452–461 (2008)Google Scholar
  10. [Hue76]
    Huet, G.: Résolution d’équations dans des langages d’ordre 1,2,.,ω. Thèse de doctorat en sciences mathématiques, Université Paris VII (1976)Google Scholar
  11. [Kar10]
    Kartzow, A.: Collapsible pushdown graphs of level 2 are tree-automatic. In: STACS. LIPIcs, vol. 5, pp. 501–512 (2010)Google Scholar
  12. [KNU02]
    Knapik, T., Niwinski, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 205–222. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. [KNUW05]
    Knapik, T., Niwinski, D., Urzycyzn, P., Walukiewicz, I.: Unsafe grammars and pannic automata. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1450–1461. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. [KO09]
    Kobayashi, N., Ong, L.: A type system equivalent to modal mu-calculus model checking of recursion schemes. In: LICS, pp. 179–188 (2009)Google Scholar
  15. [Kri07]
    Krivine, J.-L.: A call-by-name lambda-calculus machine. Higher-Order and Symbolic Computation 20(3), 199–207 (2007)CrossRefMATHMathSciNetGoogle Scholar
  16. [Ong06]
    Luke Ong, C.-H.: On model-checking trees generated by higher-order recursion schemes. In: LICS, pp. 81–90 (2006)Google Scholar
  17. [Plo77]
    Plotkin, G.D.: LCF considered as a programming language. Theor. Comput. Sci. 5(3), 223–255 (1977)CrossRefMATHMathSciNetGoogle Scholar
  18. [SW11]
    Salvati, S., Walukiewicz, I.: Krivine machines and higher-order schemes (2011),
  19. [Wal01]
    Walukiewicz, I.: Pushdown processes: Games and model checking. Information and Computation 164(2), 234–263 (2001)CrossRefMATHMathSciNetGoogle Scholar
  20. [Wan07]
    Wand, M.: On the correctness of the Krivine machine. Higher-Order and Symbolic Computation 20, 231–235 (2007), 10.1007/s10990-007-9019-8CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • S. Salvati
    • 1
  • I. Walukiewicz
    • 1
  1. 1.Université de Bordeaux, INRIA, CNRS, LaBRI UMR5800France

Personalised recommendations