Algebraic Independence and Blackbox Identity Testing

  • Malte Beecken
  • Johannes Mittmann
  • Nitin Saxena
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6756)


Algebraic independence is an advanced notion in commutative algebra that generalizes independence of linear polynomials to higher degree. The transcendence degree (trdeg) of a set \(\{f_1, \dotsc, f_m\} \subset \mathbb{F}[x_1, \dotsc, x_n]\) of polynomials is the maximal size r of an algebraically independent subset. In this paper we design blackbox and efficient linear maps ϕ that reduce the number of variables from n to r but maintain trdeg{ϕ(f i )} i  = r, assuming f i ’s sparse and small r. We apply these fundamental maps to solve several cases of blackbox identity testing:
  1. 1

    Given a circuit C and sparse subcircuits f 1,…,f m of trdeg r such that D: = C(f 1,…,f m ) has polynomial degree, we can test blackbox D for zeroness in poly(size(D)) r time.

  2. 2

    Define a ΣΠΣΠ δ (k,s,n) circuit C to be of the form ∑  i = 1 k  ∏  j = 1 s f i,j , where f i,j are sparse n-variate polynomials of degree at most δ. For k = 2, we give a \(poly(\delta sn)^{\delta^2}\) time blackbox identity test.

  3. 3

    For a general depth-4 circuit we define a notion of rank. Assuming there is a rank bound R for minimal simple ΣΠΣΠ δ (k,s,n) identities, we give a \(poly(\delta snR)^{Rk\delta^2}\) time blackbox identity test for ΣΠΣΠ δ (k,s,n) circuits. This partially generalizes the state of the art of depth-3 to depth-4 circuits.

The notion of trdeg works best with large or zero characteristic, but we also give versions of our results for arbitrary fields.


Arithmetic Circuit Transcendence Degree Algebraic Independence Sparse Polynomial Polynomial Identity Testing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adleman, L.M., Lenstra, H.W.: Finding irreducible polynomials over finite fields. In: Proceedings of the 18th Annual ACM Symposium on Theory of Computing (STOC), pp. 350–355 (1986)Google Scholar
  2. 2.
    Agrawal, M.: Proving lower bounds via pseudo-random generators. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 92–105. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Agrawal, M.: Determinant versus permanent. In: Proceedings of the 25th International Congress of Mathematicians (ICM), vol. 3, pp. 985–997 (2006)Google Scholar
  4. 4.
    Agrawal, M., Biswas, S.: Primality and identity testing via Chinese remaindering. Journal of the ACM 50(4), 429–443 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Agrawal, M., Vinay, V.: Arithmetic circuits: A chasm at depth four. In: Proceedings of the 49th Annual Symposium on Foundations of Computer Science (FOCS), pp. 67–75 (2008)Google Scholar
  6. 6.
    Anderson, M., van Melkebeek, D., Volkovich, I.: Derandomizing polynomial identity testing for multilinear constant-read formulae. In: Proceedings of the 26th Annual IEEE Conference on Computational Complexity, CCC (2011)Google Scholar
  7. 7.
    Beecken, M., Mittmann, J., Saxena, N.: Algebraic Independence and Blackbox Identity Testing. Tech. Rep. TR11-022, Electronic Colloquium on Computational Complexity, ECCC (2011)Google Scholar
  8. 8.
    Chen, Z., Kao, M.: Reducing randomness via irrational numbers. SIAM J. on Computing 29(4), 1247–1256 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    DeMillo, R.A., Lipton, R.J.: A probabilistic remark on algebraic program testing. Information Processing Letters 7(4), 193–195 (1978)CrossRefzbMATHGoogle Scholar
  10. 10.
    Dvir, Z., Gabizon, A., Wigderson, A.: Extractors and rank extractors for polynomial sources. Computational Complexity 18(1), 1–58 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Dvir, Z., Gutfreund, D., Rothblum, G., Vadhan, S.: On approximating the entropy of polynomial mappings. In: Proceedings of the 2nd Symposium on Innovations in Computer Science, ICS (2011)Google Scholar
  12. 12.
    Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Springer, New York (1995)zbMATHGoogle Scholar
  13. 13.
    Heintz, J., Schnorr, C.P.: Testing polynomials which are easy to compute (extended abstract). In: Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing, New York, NY, USA, pp. 262–272 (1980)Google Scholar
  14. 14.
    Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means proving circuit lower bounds. Computational Complexity 13(1), 1–46 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Kalorkoti, K.: A lower bound for the formula size of rational functions. SIAM J. Comp. 14(3), 678–687 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Karnin, Z., Shpilka, A.: Deterministic black box polynomial identity testing of depth-3 arithmetic circuits with bounded top fan-in. In: Proceedings of the 23rd Annual Conference on Computational Complexity (CCC), pp. 280–291 (2008)Google Scholar
  17. 17.
    Kayal, N.: The Complexity of the Annihilating Polynomial. In: Proceedings of the 24th Annual IEEE Conference on Computational Complexity (CCC), pp. 184–193 (2009)Google Scholar
  18. 18.
    Kemper, G.: A Course in Commutative Algebra. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  19. 19.
    Lewin, D., Vadhan, S.: Checking polynomial identities over any field: Towards a derandomization? In: Proceedings of the 30th Annual Symposium on the Theory of Computing (STOC), pp. 428–437 (1998)Google Scholar
  20. 20.
    Lovász, L.: On determinants, matchings and random algorithms. In: Fundamentals of Computation Theory (FCT), pp. 565–574 (1979)Google Scholar
  21. 21.
    Lovász, L.: Singular spaces of matrices and their applications in combinatorics. Bol. Soc. Braz. Mat. 20, 87–99 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Perron, O.: Algebra I (Die Grundlagen). Berlin (1927)Google Scholar
  23. 23.
    Płoski, A.: Algebraic Dependence of Polynomials After O. Perron and Some Applications. In: Cojocaru, S., Pfister, G., Ufnarovski, V. (eds.) Computational Commutative and Non-Commutative Algebraic Geometry, pp. 167–173. IOS Press, Amsterdam (2005)Google Scholar
  24. 24.
    Saraf, S., Volkovich, I.: Black-box identity testing of depth-4 multilinear circuits. In: Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC (2011)Google Scholar
  25. 25.
    Saxena, N., Seshadhri, C.: From Sylvester-Gallai configurations to rank bounds: Improved black-box identity test for depth-3 circuits. In: Proceedings of the 51st Annual Symposium on Foundations of Computer Science (FOCS), pp. 21–29 (2010)Google Scholar
  26. 26.
    Saxena, N., Seshadhri, C.: An Almost Optimal Rank Bound for Depth-3 Identities. SIAM J. Comp. 40(1), 200–224 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Saxena, N., Seshadhri, C.: Blackbox identity testing for bounded top fanin depth-3 circuits: the field doesn’t matter. In: Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC (2011)Google Scholar
  28. 28.
    Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. Journal of the ACM 27(4), 701–717 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Shpilka, A., Yehudayoff, A.: Arithmetic Circuits: A survey of recent results and open questions. Foundations and Trends in Theoretical Computer Science 5(3-4), 207–388 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, K.W. (ed.) EUROSAM 1979 and ISSAC 1979. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Malte Beecken
    • 1
  • Johannes Mittmann
    • 1
  • Nitin Saxena
    • 1
  1. 1.Hausdorff Center for MathematicsBonnGermany

Personalised recommendations