Limitations on Quantum Dimensionality Reduction

  • Aram W. Harrow
  • Ashley Montanaro
  • Anthony J. Short
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6755)


The Johnson-Lindenstrauss Lemma is a classic result which implies that any set of n real vectors can be compressed to O(logn) dimensions while only distorting pairwise Euclidean distances by a constant factor. Here we consider potential extensions of this result to the compression of quantum states. We show that, by contrast with the classical case, there does not exist any distribution over quantum channels that significantly reduces the dimension of quantum states while preserving the 2-norm distance with high probability. We discuss two tasks for which the 2-norm distance is indeed the correct figure of merit. In the case of the trace norm, we show that the dimension of low-rank mixed states can be reduced by up to a square root, but that essentially no dimensionality reduction is possible for highly mixed states.


Dimensionality Reduction Failure Probability Quantum Channel Trace Norm State Discrimination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aaronson, S.: Limitations of quantum advice and one-way communication. Theory of Computing 1, 1–28 (2004), quant-ph/0402095MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ambainis, A., Emerson, J.: Quantum t-designs: t-wise independence in the quantum world. In: Proc. 22nd Annual IEEE Conf. Computational Complexity, pp. 129–140 (2007), quant-ph/0701126 Google Scholar
  3. 3.
    Aubrun, G., Szarek, S., Werner, E.: Hastings’ additivity counterexample via Dvoretzky’s theorem (2010), arXiv:1003.4925Google Scholar
  4. 4.
    Aubrun, G., Szarek, S., Werner, E.: Non-additivity of Renyi entropy and Dvoretzky’s theorem. J. Math. Phys. 51, 022102 (2010), arXiv:0910.1189CrossRefzbMATHGoogle Scholar
  5. 5.
    Bartlett, S., Rudolph, T., Spekkens, R.: Classical and quantum communication without a shared reference frame. Phys. Rev. Lett. 91(2), 027901 (2003), quant-ph/0302111CrossRefGoogle Scholar
  6. 6.
    Brinkman, B., Charikar, M.: On the impossibility of dimension reduction in ℓ1. J. ACM 52(5), 766–788 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001), quant-ph/0102001CrossRefGoogle Scholar
  8. 8.
    Charikar, M., Sahai, A.: Dimension reduction in the ℓ1 norm. In: Proc. 43rd Annual Symp. Foundations of Computer Science, pp. 551–560 (2002)Google Scholar
  9. 9.
    Cleve, R., Høyer, P., Toner, B., Watrous, J.: Consequences and limits of nonlocal strategies. In: Proc. 19th Annual IEEE Conf. Computational Complexity, pp. 236–249 (2004), quant-ph/0404076Google Scholar
  10. 10.
    Fawzi, O., Hayden, P., Sen, P.: From low-distortion norm embeddings to explicit uncertainty relations and efficient information locking (2010), arXiv:1010.3007Google Scholar
  11. 11.
    Gavinsky, D., Kempe, J., de Wolf, R.: Strengths and weaknesses of quantum fingerprinting. In: Proc. 21st Annual IEEE Conf. Computational Complexity, pp. 288–298 (2006), quant-ph/0603173Google Scholar
  12. 12.
    Harrow, A.W., Montanaro, A., Short, A.J.: Limitations on quantum dimensionality reduction (2010), arXiv:1012.2262Google Scholar
  13. 13.
    Hayden, P., Winter, A.: The fidelity alternative and quantum measurement simulation (2010), arXiv:1003.4994Google Scholar
  14. 14.
    Indyk, P.: Algorithmic applications of low-distortion geometric embeddings. In: Proc. 42nd Annual Symp. Foundations of Computer Science, pp. 10–33 (2001)Google Scholar
  15. 15.
    Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proc. 30th Annual ACM Symp. Theory of Computing, pp. 604–613 (1998)Google Scholar
  16. 16.
    Johnson, W., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space. Contemporary Mathematics 26, 189–206 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997)CrossRefzbMATHGoogle Scholar
  18. 18.
    Kushilevitz, E., Ostrovsky, R., Rabani, Y.: Efficient search for approximate nearest neighbor in high dimensional spaces. In: Proc. 30th Annual ACM Symp. Theory of Computing, pp. 614–623 (1998)Google Scholar
  19. 19.
    Matthews, W., Wehner, S., Winter, A.: Distinguishability of quantum states under restricted families of measurements with an application to quantum data hiding. Comm. Math. Phys. 291(3), 813–843 (2009), arXiv:0810.2327MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  21. 21.
    Sen, P.: Random measurement bases, quantum state distinction and applications to the hidden subgroup problem. In: Proc. 21st Annual IEEE Conf. Computational Complexity, p. 287 (2006), quant-ph/0512085Google Scholar
  22. 22.
    Watrous, J.: Theory of quantum information lecture notes (2008),
  23. 23.
    Winter, A.: Quantum and classical message identification via quantum channels. In: Hirota, O. (ed.) Festschrift “A S Holevo 60”, pp. 171–188 (2004), quant-ph/0401060Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Aram W. Harrow
    • 1
    • 2
  • Ashley Montanaro
    • 3
  • Anthony J. Short
    • 3
  1. 1.Department of Computer Science & EngineeringUniversity of WashingtonSeattleUSA
  2. 2.Department of MathematicsUniversity of BristolBristolUK
  3. 3.Centre for Quantum Information and Foundations, DAMTPUniversity of CambridgeCambridgeUK

Personalised recommendations