Advertisement

On the Power of Algebraic Branching Programs of Width Two

  • Eric Allender
  • Fengming Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6755)

Abstract

We show that there are families of polynomials having small depth-two arithmetic circuits that cannot be expressed by algebraic branching programs of width two. This clarifies the complexity of the problem of computing the product of a sequence of two-by-two matrices, which arises in several settings.

Keywords

Irreducible Polynomial Degree Sequence Boolean Circuit Arithmetic Formula Algebraic Complexity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, M., Allender, E., Datta, S.: On TC0, AC0, and arithmetic circuits. Journal of Computer and System Sciences 60, 395–421 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Allender, E.: Arithmetic circuits and counting complexity classes. In: Krajíček, J. (ed.) Complexity of Computations and Proofs. Quaderni di Matematica, vol. 13, pp. 33–72. Seconda Università di Napoli (2004)Google Scholar
  3. 3.
    Ambainis, A., Allender, E., Barrington, D.A.M., Datta, S., LêThanh, H.: Bounded depth arithmetic circuits: Counting and closure. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 149–158. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Barrington, D.A.: Width-3 permutation branching programs. Technical Report Technical Memorandum MIT/LCS/TM-293, MIT (1985)Google Scholar
  5. 5.
    Ben-Or, M., Cleve, R.: Computing algebraic formulas using a constant number of registers. In: Proc. ACM Symp. on Theory of Computing (STOC), pp. 254–257 (1988)Google Scholar
  6. 6.
    Ben-Or, M., Cleve, R.: Computing algebraic formulas using a constant number of registers. SIAM Journal on Computing 21(1), 54–58 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Caussinus, H., McKenzie, P., Thérien, D., Vollmer, H.: Nondeterministic \(\mbox{\rm NC$^1$}\) computation. Journal of Computer and System Sciences 57, 200–212 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jansen, M.J.: Lower bounds for syntactically multilinear algebraic branching programs. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 407–418. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Jansen, M.J., Raghavendra Rao, B.V.: Simulation of arithmetical circuits by branching programs with preservation of constant width and syntactic multilinearity. In: Frid, A., Morozov, A., Rybalchenko, A., Wagner, K.W. (eds.) CSR 2009. LNCS, vol. 5675, pp. 179–190. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Jung, H.: Depth efficient transformations of arithmetic into Boolean circuits. In: Budach, L. (ed.) FCT 1985. LNCS, vol. 199, pp. 167–173. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  11. 11.
    Lipton, R., Zalcstein, Y.: Word problems solvable in logspace. Journal of the ACM 24, 522–526 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Mahajan, M., Raghavendra Rao, B.V.: Small-space analogues of valiant’s classes. In: Kutyłowski, M., Charatonik, W., Gębala, M. (eds.) FCT 2009. LNCS, vol. 5699, pp. 250–261. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Mahajan, M., Saurabh, N., Sreenivasaiah, K.: Counting paths in planar width 2 branching programs (2011) (manuscript)Google Scholar
  14. 14.
    Nisan, N.: Lower bounds for non-commutative computation (extended abstract). In: Proc. ACM Symp. on Theory of Computing (STOC), pp. 410–418 (1991)Google Scholar
  15. 15.
    Robinson, D.: Parallel algorithms for group word problems. PhD thesis, Univ. of California, San Diego (1993)Google Scholar
  16. 16.
    Saha, C., Saptharishi, R., Saxena, N.: The power of depth 2 circuits over algebras. In: Proc. Conference on Foundations of Software Technology and Theoretical Computer Science (FST&TCS), pp. 371–382 (2009)Google Scholar
  17. 17.
    Saha, C.: Private communication (2011)Google Scholar
  18. 18.
    Valiant, L.: Completeness classes in algebra. In: Proc. ACM Symp. on Theory of Computing (STOC), pp. 249–261 (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Eric Allender
    • 1
  • Fengming Wang
    • 1
  1. 1.Department of Computer ScienceRutgers UniversityPiscatawayUSA

Personalised recommendations