Advertisement

Advice Coins for Classical and Quantum Computation

  • Scott Aaronson
  • Andrew Drucker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6755)

Abstract

We study the power of classical and quantum algorithms equipped with nonuniform advice, in the form of a coin whose bias encodes useful information. This question takes on particular importance in the quantum case, due to a surprising result that we prove: a quantum finite automaton with just two states can be sensitive to arbitrarily small changes in a coin’s bias. This contrasts with classical probabilistic finite automata, whose sensitivity to changes in a coin’s bias is bounded by a classic 1970 result of Hellman and Cover.

Despite this finding, we are able to bound the power of advice coins for space-bounded classical and quantum computation. We define the classes BPPSPACE/coin and BQPSPACE/coin, of languages decidable by classical and quantum polynomial-space machines with advice coins. Our main theorem is that both classes coincide with PSPACE/poly. Proving this result turns out to require substantial machinery. We use an algorithm due to Neff for finding roots of polynomials in NC; a result from algebraic geometry that lower-bounds the separation of a polynomial’s roots; and a result on fixed-points of superoperators due to Aaronson and Watrous, originally proved in the context of quantum computing with closed timelike curves.

Keywords

BQP finite automata finite-precision arithmetic PSPACE Quantum Computation root-finding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aaronson, S.: BQP and the polynomial hierarchy. In: Proc. 42nd ACM STOC (2010)Google Scholar
  2. 2.
    Aaronson, S., Watrous, J.: Closed timelike curves make quantum and classical computing equivalent. Proc. Roy. Soc. London A 465, 631–647 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ajtai, M.: Σ1 1-formulae on finite structures. Ann. Pure Appl. Logic 24, 1–48 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Amano, K.: Bounds on the size of small depth circuits for approximating majority. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.E., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 59–70. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Algorithms and Computation in Mathematics. Springer-Verlag New York, Inc., Secaucus (2006)zbMATHGoogle Scholar
  6. 6.
    Borodin, A.: On relating time and space to size and depth. SIAM J. Comput. 6(4), 733–744 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Borodin, A., Cook, S., Pippenger, N.: Parallel computation for well-endowed rings and space-bounded probabilistic machines. Information and Control 58(1-3), 113–136 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Braverman, M., Rao, A., Raz, R., Yehudayoff, A.: Pseudorandom generators for regular branching programs. In: Proc. 51st IEEE FOCS (2010)Google Scholar
  9. 9.
    Brody, J., Verbin, E.: The coin problem, and pseudorandomness for branching programs. In: Proc. 51st IEEE FOCS (2010)Google Scholar
  10. 10.
    Cover, T.M.: Hypothesis testing with finite statistics. Ann. Math. Stat. 40(3), 828–835 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Galvao, E.F., Hardy, L.: Substituting a qubit for an arbitrarily large number of classical bits. Phys. Rev. Lett. 90(087902) (2003)Google Scholar
  12. 12.
    Hellman, E.M.: Learning with finite memory. PhD thesis, Stanford University, Department of Electrical Engineering (1969)Google Scholar
  13. 13.
    Hellman, E.M., Cover, T.M.: Learning with finite memory. Ann. of Math. Stat. 41, 765–782 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Neff, C.A.: Specified precision polynomial root isolation is in NC. J. Comput. Sys. Sci. 48(3), 429–463 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Neff, C.A., Reif, J.H.: An efficient algorithm for the complex roots problem. J. Complexity 12(2), 81–115 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  17. 17.
    O’Donnell, R., Wimmer, K.: Approximation by DNF: examples and counterexamples. In: Arge, L., Cachin, C., Jurdzinski, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 195–206. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Pan, V.Y.: Optimal (up to polylog factors) sequential and parallel algorithms for approximating complex polynomial zeros. In: Proc. 27th ACM STOC, pp. 741–750 (1995)Google Scholar
  19. 19.
    Terhal, B., DiVincenzo, D.: On the problem of equilibration and the computation of correlation functions on a quantum computer. Phys. Rev. A 61(022301) (2000)Google Scholar
  20. 20.
    Viola, E.: On approximate majority and probabilistic time. Computational Complexity 18(3), 155–168 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Viola., E.: Randomness buys depth for approximate counting. Electronic Colloquium on Computational Complexity (ECCC), TR10-175 (2010)Google Scholar
  22. 22.
    Watrous., J.: Space-bounded quantum complexity. J. Comput. Sys. Sci. 59(2), 281–326 (1999)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Scott Aaronson
    • 1
  • Andrew Drucker
    • 1
  1. 1.Computer Science and Artificial Intelligence LaboratoryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations