Advertisement

Characterizing Arithmetic Circuit Classes by Constraint Satisfaction Problems

(Extended Abstract)
  • Stefan Mengel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6755)

Abstract

We explore the expressivity of constraint satisfaction problems (CSPs) in the arithmetic circuit model. While CSPs are known to yield VNP-complete polynomials in the general case, we show that for different restrictions of the structure of the CSPs we get characterizations of different arithmetic circuit classes. In particular we give the first natural non-circuit characterization of VP, the class of polynomial families efficiently computable by arithmetic circuits.

Keywords

Constraint Satisfaction Problem Tree Decomposition Parse Tree Primal Graph Satisfying Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic database schemes. J. ACM 30(3), 479–513 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ben-Or, M., Cleve, R.: Computing algebraic formulas using a constant number of registers. SIAM J. Comput. 21(1), 54–58 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bodlaender, H.L.: NC-algorithms for graphs with small treewidth. In: van Leeuwen, J. (ed.) WG 1988. LNCS, vol. 344, pp. 1–10. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  4. 4.
    Brent, R.P.: The complexity of multiple-precision arithmetic. In: Brent, R.P., Andersson, R.S. (eds.) The Complexity of Computational Problem Solving, pp. 126–165. Univ. of Queensland Press (1976)Google Scholar
  5. 5.
    Briquel, I., Koiran, P.: A dichotomy theorem for polynomial evaluation. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 187–198. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Briquel, I., Koiran, P., Meer, K.: On the expressive power of cnf formulas of bounded tree- and clique-width. Discrete Applied Mathematics 159(1), 1–14 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bürgisser, P.: Completeness and reduction in algebraic complexity theory. Springer, Heidelberg (2000)CrossRefzbMATHGoogle Scholar
  8. 8.
    Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic. Discrete Applied Mathematics 108(1-2), 23–52 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fischer, E., Makowsky, J.A., Ravve, E.V.: Counting truth assignments of formulas of bounded tree-width or clique-width. Discrete Applied Mathematics 156(4), 511–529 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Flum, J., Grohe, M.: Parameterized complexity theory. Springer-Verlag New York Inc., New York (2006)zbMATHGoogle Scholar
  11. 11.
    Gottlob, G., Leone, N., Scarcello, F.: The complexity of acyclic conjunctive queries. J. ACM 48(3), 431–498 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Koiran, P., Meer, K.: On the expressive power of CNF formulas of bounded tree- and clique-width. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 252–263. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Flarup, U., Koiran, P., Lyaudet, L.: On the Expressive Power of Planar Perfect Matching and Permanents of Bounded Treewidth Matrices. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 124–136. Springer, Heidelberg (2007), http://dx.doi.org/10.1007/978-3-540-77120-3_13
  14. 14.
    Malod, G., Portier, N.: Characterizing Valiant’s algebraic complexity classes. J. Complexity 24(1), 16–38 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Schaefer, T.J.: The complexity of satisfiability problems. In: STOC 1978, pp. 216–226 (1978)Google Scholar
  16. 16.
    Valiant, L.G., Skyum, S., Berkowitz, S., Rackoff, C.: Fast parallel computation of polynomials using few processors. SIAM J. Comput. 12(4), 641–644 (1983)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Stefan Mengel
    • 1
  1. 1.Institute of MathematicsUniversity of PaderbornPaderbornGermany

Personalised recommendations