VC-Dimension and Shortest Path Algorithms

  • Ittai Abraham
  • Daniel Delling
  • Amos Fiat
  • Andrew V. Goldberg
  • Renato F. Werneck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6755)


We explore the relationship between VC-dimension and graph algorithm design. In particular, we show that set systems induced by sets of vertices on shortest paths have VC-dimension at most two. This allows us to use a result from learning theory to improve time bounds on query algorithms for the point-to-point shortest path problem in networks of low highway dimension, such as road networks. We also refine the definitions of highway dimension and related concepts, making them more general and potentially more relevant to practice. In particular, we define highway dimension in terms of set systems induced by shortest paths, and give cardinality-based and average case definitions.


Short Path Road Network Short Path Problem Short Path Algorithm Label Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A Hub-Based Labeling Algorithm for Shortest Paths in Road Networks. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 230–241. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway Dimension, Shortest Paths, and Provably Efficient Algorithms. In: Proceedings of the 21st Annual ACM–SIAM Symposium on Discrete Algorithms (SODA 2010), pp. 782–793 (2010)Google Scholar
  3. 3.
    Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In Transit to Constant Shortest-Path Queries in Road Networks. In: Proceedings of the 9th Workshop on Algorithm Engineering and Experiments (ALENEX 2007), pp. 46–59. SIAM, Philadelphia (2007)CrossRefGoogle Scholar
  4. 4.
    Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast Routing in Road Networks with Transit Nodes. Science 316(5824), 566 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Brönnimann, H., Goodrich, M.: Almost Optimal Set Covers in Finite VC-dimension. Discrete and Computational Geometry 14, 463–497 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Clarkson, K.L.: A Las Vegas Algorithm for Linear Programming When the Dimension is Small. In: Proc. 29th IEEE Annual Symposium on Foundations of Computer Science, pp. 452–456. IEEE, Los Alamitos (1988)Google Scholar
  7. 7.
    Clarkson, K.L.: Algorithms for Polytope Covering and Approximation. In: Proc. 3rd Workshop Algo. Data Struct., pp. 246–252. Springer, New York (1993)CrossRefGoogle Scholar
  8. 8.
    Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and Distance Queries via 2-hop Labels. SIAM J. Comput. 32 (2003)Google Scholar
  9. 9.
    Delling, D., Goldberg, A.V., Nowatzyk, A., Werneck, R.F.: PHAST: Hardware-Accelerated Shortest Path Trees. In: 25th International Parallel and Distributed Processing Symposium (IPDPS 2011). IEEE Computer Society, Los Alamitos (2011)Google Scholar
  10. 10.
    Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning Algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Even, G., Rawitz, D., Shahar, S.: Hitting Sets when the VC-dimension is Small. Inf. Process. Lett. 95, 358–362 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance Labeling in Graphs. J. Algorithms 53(1), 85–112 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Goldberg, A., Kaplan, H., Werneck, R.: Reach for A*: Shortest Path Algorithms with Preprocessing. In: Demetrescu, C., Goldberg, A., Johnson, D. (eds.) The Shortest Path Problem: Ninth DIMACS Implementation Challenge, pp. 93–140. AMS, Providence (2009)Google Scholar
  15. 15.
    Gutman, R.: Reach-based Routing: A New Approach to Shortest Path Algorithms Optimized for Road Networks. In: Proc. 6th International Workshop on Algorithm Engineering and Experiments, pp. 100–111 (2004)Google Scholar
  16. 16.
    Johnson, D.: Approximation Algorithms for Combinatorial Problems. J. Comput. Syst. Sci. 9, 256–278 (1974)CrossRefzbMATHGoogle Scholar
  17. 17.
    Kleinberg, J.: Detecting a Network Failure. In: Proc. 41nd IEEE Annual Symposium on Foundations of Computer Science, pp. 231–239. IEEE, Los Alamitos (2008)Google Scholar
  18. 18.
    Sanders, P., Schultes, D.: Highway Hierarchies Hasten Exact Shortest Path Queries. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 568–579. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Thorup, M., Zwick, U.: Approximate Distance Oracles. J. ACM 52(1), 1–24 (2005)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Vapnik, V., Chervonenkis, A.: On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities. Theory of Probability and its Applications 16, 264–280 (1971)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ittai Abraham
    • 1
  • Daniel Delling
    • 1
  • Amos Fiat
    • 2
  • Andrew V. Goldberg
    • 1
  • Renato F. Werneck
    • 1
  1. 1.Microsoft Research Silicon ValleyUSA
  2. 2.Tel Aviv UniversityIsrael

Personalised recommendations