Sorting by Transpositions Is Difficult

  • Laurent Bulteau
  • Guillaume Fertin
  • Irena Rusu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6755)


In comparative genomics, a transposition is an operation that exchanges two consecutive sequences of genes in a genome. The transposition distance, that is, the minimum number of transpositions needed to transform a genome into another, can be considered as a relevant evolutionary distance. The problem of computing this distance when genomes are represented by permutations, called the Sorting by Transpositions problem (SBT), has been introduced by Bafna and Pevzner [3] in 1995. It has naturally been the focus of a number of studies, but the computational complexity of this problem has remained undetermined for 15 years.

In this paper, we answer this long-standing open question by proving that the Sorting by Transpositions problem is NP-hard. As a corollary of our result, we also prove that the following problem from [10] is NP-hard: given a permutation π, is it possible to sort π using d b (π)/3 permutations, where d b (π) is the number of breakpoints of π?


Basic Block Boolean Variable Conjunctive Normal Form Boolean Formula Word Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amir, A., Aumann, Y., Benson, G., Levy, A., Lipsky, O., Porat, E., Skiena, S., Vishne, U.: Pattern matching with address errors: Rearrangement distances. J. Comput. Syst. Sci. 75(6), 359–370 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Amir, A., Aumann, Y., Indyk, P., Levy, A., Porat, E.: Efficient computations of ℓ1 and ℓ?8? rearrangement distances. In: Ziviani, N., Baeza-Yates, R.A. (eds.) SPIRE 2007. LNCS, vol. 4726, pp. 39–49. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Bafna, V., Pevzner, P.A.: Sorting permutations by transpositions. In: SODA, pp. 614–623 (1995)Google Scholar
  4. 4.
    Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM J. Discrete Math. 11(2), 224–240 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Benoît-Gagné, M., Hamel, S.: A new and faster method of sorting by transpositions. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 131–141. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Bongartz, D.: Algorithmic Aspects of Some Combinatorial Problems in Bioinformatics. PhD thesis, RWTH Aachen University, Germany (2006)Google Scholar
  7. 7.
    Bulteau, L., Fertin, G., Rusu, I.: Sorting by Transpositions is Difficult. CoRR abs/1011.1157 (2010)Google Scholar
  8. 8.
    Chitturi, B., Sudborough, I.H.: Bounding prefix transposition distance for strings and permutations. In: HICSS, p. 468. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  9. 9.
    Christie, D.A.: Sorting permutations by block-interchanges. Inf. Process. Lett. 60(4), 165–169 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Christie, D.A.: Genome Rearrangement Problems. PhD thesis, University of Glasgow, Scotland (1998)Google Scholar
  11. 11.
    Christie, D.A., Irving, R.W.: Sorting strings by reversals and by transpositions. SIAM J. Discrete Math. 14(2), 193–206 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with moves. In: SODA, pp. 667–676 (2002)Google Scholar
  13. 13.
    Dias, Z., Meidanis, J.: Sorting by prefix transpositions. In: Laender, A.H.F., Oliveira, A.L. (eds.) SPIRE 2002. LNCS, vol. 2476, pp. 65–76. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Elias, I., Hartman, T.: A 1.375-approximation algorithm for sorting by transpositions. IEEE/ACM Trans. Comput. Biology Bioinform. 3(4), 369–379 (2006)CrossRefGoogle Scholar
  15. 15.
    Eriksson, H., Eriksson, K., Karlander, J., Svensson, L.J., Wästlund, J.: Sorting a bridge hand. Discrete Mathematics 241(1-3), 289–300 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Feng, J., Zhu, D.: Faster algorithms for sorting by transpositions and sorting by block interchanges. ACM Transactions on Algorithms 3(3) (2007)Google Scholar
  17. 17.
    Fertin, G., Labarre, A., Rusu, I., Tannier, É., Vialette, S.: Combinatorics of genome rearrangements. The MIT Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  18. 18.
    Gu, Q.-P., Peng, S., Chen, Q.M.: Sorting permutations and its applications in genome analysis. Lectures on Mathematics in the Life Science, vol. 26, pp. 191–201 (1999)Google Scholar
  19. 19.
    Guyer, S.A., Heath, L.S., Vergara, J.P.: Subsequence and run heuristics for sorting by transpositions. Technical report, Virginia State University (1997)Google Scholar
  20. 20.
    Hartman, T., Shamir, R.: A simpler and faster 1.5-approximation algorithm for sorting by transpositions. Inf. Comput. 204(2), 275–290 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kolman, P., Waleń, T.: Reversal distance for strings with duplicates: Linear time approximation using hitting set. In: Erlebach, T., Kaklamanis, C. (eds.) WAOA 2006. LNCS, vol. 4368, pp. 279–289. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Labarre, A.: New bounds and tractable instances for the transposition distance. IEEE/ACM Trans. Comput. Biology Bioinform. 3(4), 380–394 (2006)CrossRefGoogle Scholar
  23. 23.
    Labarre, A.: Edit distances and factorisations of even permutations. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 635–646. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Qi, X.-Q.: Combinatorial Algorithms of Genome Rearrangements in Bioinformatics. PhD thesis, University of Shandong, China (2006)Google Scholar
  25. 25.
    Radcliffe, A.J., Scott, A.D., Wilmer, A.L.: Reversals and transpositions over finite alphabets. SIAM J. Discret. Math. 19, 224–244 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Shapira, D., Storer, J.A.: Edit distance with move operations. In: Apostolico, A., Takeda, M. (eds.) CPM 2002. LNCS, vol. 2373, pp. 85–98. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Laurent Bulteau
    • 1
  • Guillaume Fertin
    • 1
  • Irena Rusu
    • 1
  1. 1.Laboratoire d’Informatique de Nantes-Atlantique (LINA), UMR CNRS 6241Université de NantesNantes Cedex 3France

Personalised recommendations