Parameterized Bounded-Depth Frege Is Not Optimal

  • Olaf Beyersdorff
  • Nicola Galesi
  • Massimo Lauria
  • Alexander Razborov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6755)


A general framework for parameterized proof complexity was introduced by Dantchev, Martin, and Szeider [9]. There the authors concentrate on tree-like Parameterized Resolution—a parameterized version of classical Resolution—and their gap complexity theorem implies lower bounds for that system.

The main result of the present paper significantly improves upon this by showing optimal lower bounds for a parameterized version of bounded-depth Frege. More precisely, we prove that the pigeonhole principle requires proofs of size n Ω(k) in parameterized bounded-depth Frege, and, as a special case, in dag-like Parameterized Resolution. This answers an open question posed in [9]. In the opposite direction, we interpret a well-known technique for FPT algorithms as a DPLL procedure for Parameterized Resolution. Its generalization leads to a proof search algorithm for Parameterized Resolution that in particular shows that tree-like Parameterized Resolution allows short refutations of all parameterized contradictions given as bounded-width CNF’s.


Vertex Cover Proof System Computable Function Parameterized Resolution Satisfying Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alekhnovich, M., Razborov, A.A.: Resolution is not automatizable unless W(P) is tractable. SIAM Journal on Computing 38(4), 1347–1363 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Beame, P., Impagliazzo, R., Sabharwal, A.: The resolution complexity of independent sets and vertex covers in random graphs. Computational Complexity 16(3), 245–297 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Beame, P., Karp, R.M., Pitassi, T., Saks, M.E.: The efficiency of resolution and Davis–Putnam procedures. SIAM J. Comput. 31(4), 1048–1075 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Beyersdorff, O., Galesi, N., Lauria, M.: Parameterized complexity of DPLL search procedures. In: Proc. 14th International Conference on Theory and Applications of Satisfiability Testing (to appear, 2011)Google Scholar
  5. 5.
    Bonet, M.L., Pitassi, T., Raz, R.: Lower bounds for cutting planes proofs with small coefficients. The Journal of Symbolic Logic 62(3), 708–728 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Buss, S.R.: Polynomial size proofs of the propositional pigeonhole principle. The Journal of Symbolic Logic 52, 916–927 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chen, Y., Flum, J.: The parameterized complexity of maximality and minimality problems. Annals of Pure and Applied Logic 151(1), 22–61 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. The Journal of Symbolic Logic 44(1), 36–50 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dantchev, S.S., Martin, B., Szeider, S.: Parameterized proof complexity. In: Proc. 48th IEEE Symposium on the Foundations of Computer Science, pp. 150–160 (2007)Google Scholar
  10. 10.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  11. 11.
    Flum, J., Grohe, M.: Describing parameterized complexity classes. Information and Computation 187(2), 291–319 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  13. 13.
    Gao, Y.: Data reductions, fixed parameter tractability, and random weighted d-CNF satisfiability. Artificial Intelligence 173(14), 1343–1366 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39, 297–308 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Krajíček, J., Pudlák, P., Woods, A.: Exponential lower bounds to the size of bounded depth Frege proofs of the pigeonhole principle. Random Structures and Algorithms 7(1), 15–39 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford (2006)CrossRefzbMATHGoogle Scholar
  17. 17.
    Pitassi, T., Beame, P., Impagliazzo, R.: Exponential lower bounds for the pigeonhole principle. Computational Complexity 3, 97–140 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Pudlák, P.: Lower bounds for resolution and cutting planes proofs and monotone computations. The Journal of Symbolic Logic 62(3), 981–998 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Razborov, A., Wigderson, A., Yao, A.: Read-once branching programs, rectangular proofs of the pigeonhole principle and the transversal calculus. Combinatorica 22(4), 555–574 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Riis, S.: A complexity gap for tree resolution. Computational Complexity 10(3), 179–209 (2001)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Olaf Beyersdorff
    • 1
  • Nicola Galesi
    • 2
  • Massimo Lauria
    • 2
  • Alexander Razborov
    • 3
  1. 1.Institut für Theoretische InformatikLeibniz Universität HannoverGermany
  2. 2.Dipartimento di InformaticaSapienza Università di RomaItaly
  3. 3.Department of Computer ScienceThe University of ChicagoUSA

Personalised recommendations