Advertisement

Lower Bounds for Online Integer Multiplication and Convolution in the Cell-Probe Model

  • Raphaël Clifford
  • Markus Jalsenius
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6755)

Abstract

We show time lower bounds for both online integer multiplication and convolution in the cell-probe model with word size w. For the multiplication problem, one pair of digits, each from one of two n digit numbers that are to be multiplied, is given as input at step i. The online algorithm outputs a single new digit from the product of the numbers before step i + 1. We give a lower bound of \(\Omega(\frac{\delta}{w} \log n)\) time on average per output digit for this problem where 2 δ is the maximum value of a digit. In the convolution problem, we are given a fixed vector V of length n and we consider a stream in which numbers arrive one at a time. We output the inner product of V and the vector that consists of the last n numbers of the stream. We show an \(\Omega(\frac{\delta}{w}\log n)\) lower bound for the time required per new number in the stream. All the bounds presented hold under randomisation and amortisation. Multiplication and convolution are central problems in the study of algorithms which also have the widest range of practical applications.

Keywords

Information Transfer Vector Versus Online Algorithm Read Instruction Binary Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clifford, R., Efremenko, K., Porat, B., Porat, E.: A black box for online approximate pattern matching. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 143–151. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Clifford, R., Sach, B.: Pattern matching in pseudo real-time. Journal of Discrete Algorithms 9(1), 67–81 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Daykin, D.E.: Distribution of bordered persymmetric matrices in a finite field. Journal für die reine und angewandte Mathematik 203, 47–54 (1960)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Fischer, M.J., Stockmeyer, L.J.: Fast on-line integer multiplication. In: STOC 1973: Proc. 5th Annual ACM Symposium Theory of Computing, pp. 67–72 (1973)Google Scholar
  5. 5.
    Fredman, M.L.: Observations on the complexity of generating quasi-gray codes. SIAM Journal on Computing 7(2), 134–146 (1978)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fredman, M.L., Saks, M.: The cell probe complexity of dynamic data structures. In: STOC 1989: Proc. 21st Annual ACM Symposium Theory of Computing, pp. 345–354 (1989)Google Scholar
  7. 7.
    Galil, Z.: String matching in real time. Journal of the ACM 28(1), 134–149 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kaltofen, E., Lobo, A.: On rank properties of Toeplitz matrices over finite fields. In: ISSAC 1996: Proc. of the 1996 International Symposium on Symbolic and Algebraic Computation, pp. 241–249 (1996)Google Scholar
  9. 9.
    Minsky, M., Papert, S.: Perceptrons: An Introduction to Computational Geometry. MIT Press, Cambridge (1969)zbMATHGoogle Scholar
  10. 10.
    Paterson, M.S., Fischer, M.J., Meyer, A.R.: An improved overlap argument for on-line multiplication. In: Proceedings of SIAM-AMS, vol. 7, pp. 97–111. Amer. Math. Soc., Providence (1974)Google Scholar
  11. 11.
    Pǎtraşcu, M.: Lower Bound Techniques for Data Structures. PhD thesis, Massachusetts Institute of Technology (2008)Google Scholar
  12. 12.
    Pǎtraşcu, M., Demaine, E.D.: Tight bounds for the partial-sums problem. In: SODA 2004: Proc. 15th ACM/SIAM Symposium on Discrete Algorithms, pp. 20–29 (2004)Google Scholar
  13. 13.
    Pătraşcu, M., Demaine, E.D.: Logarithmic lower bounds in the cell-probe model. SIAM Journal on Computing 35(4), 932–963 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Yao, A.C.-C.: Probabilistic computations: Toward a unified measure of complexity. In: FOCS 1977: Proc. 18th Annual Symposium on Foundations of Computer Science, pp. 222–227 (1977)Google Scholar
  15. 15.
    Yao, A.C.-C.: Should tables be sorted? Journal of the ACM 28(3), 615–628 (1981)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Raphaël Clifford
    • 1
  • Markus Jalsenius
    • 1
  1. 1.Department of Computer ScienceUniversity of BristolBristolUK

Personalised recommendations