Efficient Sample Extractors for Juntas with Applications

  • Sourav Chakraborty
  • David García-Soriano
  • Arie Matsliah
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6755)


We develop a query-efficient sample extractor for juntas, that is, a probabilistic algorithm that can simulate random samples from the core of a k-junta f:{0,1} n  → {0,1} given oracle access to a function f′:{0,1} n  → {0,1} that is only close to f. After a preprocessing step, which takes \(\widetilde{O}(k)\) queries, generating each sample to the core of f takes only one query to f′.

We then plug in our sample extractor in the “testing by implicit learning” framework of Diakonikolas et al. [[DLM+07]], improving the query complexity of testers for various Boolean function classes. In particular, for some of the classes considered in [DLM+07], such as s-term DNF formulas, size-s decision trees, size-s Boolean formulas, s-sparse polynomials over \(\mathbb{F}_2\), and size-s branching programs, the query complexity is reduced from \(\widetilde{O}(s^4/\epsilon ^2)\) to \(\widetilde{O}(s/\epsilon ^2)\). This shows that using the new sample extractor, testing by implicit learning can lead to testers having better query complexity than those tailored to a specific problem, such as the tester of Parnas et al. [PRS02] for the class of monotone s-term DNF formulas.

In terms of techniques, we extend the tools used in [CGM11] for testing function isomorphism to juntas. Specifically, while the original analysis in [CGM11] allowed query-efficient noisy sampling from the core of any k-junta f, the one presented here allows similar sampling from the core of the closest k-junta to f, even if f is not a k-junta but just close to being one. One of the observations leading to this extension is that the junta tester of Blais [Bla09], based on which the aforementioned sampling is achieved, enjoys a certain weak form of tolerance.


property testing sample extractors implicit learning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BBM11]
    Blais, E., Brody, J., Matulef, K.: Property testing lower bounds via communication complexity. Personal communication (2011)Google Scholar
  2. [Bla09]
    Blais, E.: Testing juntas nearly optimally. In: Proc. ACM Symposium on the Theory of Computing, pp. 151–158. ACM, New York (2009)Google Scholar
  3. [CGM11]
    Chakraborty, S., García-Soriano, D., Matsliah, A.: Nearly tight bounds for testing function isomorphism. In: Proc. of the ACM-SIAM Symposium on Discrete Algorithms, SODA (2011)Google Scholar
  4. [DLM+07]
    Diakonikolas, I., Lee, H.K., Matulef, K., Onak, K., Rubinfeld, R., Servedio, R.A., Wan, A.: Testing for concise representations. In: Proc. IEEE Symposium on Foundations of Computer Science, pp. 549–558 (2007)Google Scholar
  5. [DLM+08]
    Diakonikolas, I., Lee, H.K., Matulef, K., Servedio, R.A., Wan, A.: Efficiently testing sparse GF(2) polynomials. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 502–514. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. [FKR+02]
    Fischer, E., Kindler, G., Ron, D., Safra, S., Samorodnitsky, A.: Testing juntas. In: FOCS, pp. 103–112 (2002)Google Scholar
  7. [GOS+09]
    Gopalan, P., O’Donnell, R., Servedio, R.A., Shpilka, A., Wimmer, K.: Testing fourier dimensionality and sparsity. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 500–512. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. [HV06]
    Healy, A., Viola, E.: Constant-depth circuits for arithmetic in finite fields of characteristic two. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 672–683. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. [PRS02]
    Parnas, M., Ron, D., Samorodnitsky, A.: Testing basic boolean formulae. SIAM J. Discrete Math. 16(1), 20–46 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. [Ser10]
    Servedio, R.A.: Testing by implicit learning: a brief survey (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sourav Chakraborty
    • 1
  • David García-Soriano
    • 2
  • Arie Matsliah
    • 3
  1. 1.Chennai Mathematical InstituteIndia
  2. 2.CWI AmsterdamThe Netherlands
  3. 3.IBM Research and TechnionIsrael

Personalised recommendations