Advertisement

A Polynomial-Time Algorithm for Estimating the Partition Function of the Ferromagnetic Ising Model on a Regular Matroid

  • Leslie Ann Goldberg
  • Mark Jerrum
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6755)

Abstract

We investigate the computational difficulty of approximating the partition function of the ferromagnetic Ising model on a regular matroid. Jerrum and Sinclair have shown that there is a fully polynomial randomised approximation scheme (FPRAS) for the class of graphic matroids. On the other hand, the authors have previously shown, subject to a complexity-theoretic assumption, that there is no FPRAS for the class of binary matroids, which is a proper superset of the class of graphic matroids. In order to map out the region where approximation is feasible, we focus on the class of regular matroids, an important class of matroids which properly includes the class of graphic matroids, and is properly included in the class of binary matroids. Using Seymour’s decomposition theorem, we give an FPRAS for the class of regular matroids.

Keywords

Partition Function Rank Function Tutte Polynomial Ferromagnetic Case Minimum Cycle Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrzejak, A.: Splitting formulas for Tutte polynomials. J. Combin. Theory Ser. B 70(2), 346–366 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Goldberg, L., Jerrum, M.: Approximating the partition function of the ferromagnetic potts model. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 396–407. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Goldberg, L.A., Jerrum, M.: Inapproximability of the Tutte polynomial. Inform. and Comput. 206(7), 908–929 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Goldberg, L.A., Jerrum, M.: Approximating the Tutte polynomial of a binary matroid and other related combinatorial polynomials. arXiv:1006.5234v1 (cs.CC) (2010)Google Scholar
  5. 5.
    Goldberg, L.A., Jerrum, M.: A polynomial-time algorithm for estimating the partition function of the ferromagnetic ising model on a regular matroid. arXiv:1010.6231v1 (cs.CC) (2010)Google Scholar
  6. 6.
    Golynski, A., Horton, J.D.: A polynomial time algorithm to find the minimum cycle basis of a regular matroid. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT 2002. LNCS, vol. 2368, pp. 200–209. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Jaeger, F., Vertigan, D.L., Welsh, D.J.A.: On the computational complexity of the Jones and Tutte polynomials. Math. Proc. Cambridge Philos. Soc. 108(1), 35–53 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jerrum, M., Sinclair, A.: Polynomial-time approximation algorithms for the Ising model. SIAM J. Comput. 22(5), 1087–1116 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Oxley, J.G.: Matroid theory. Oxford Science Publications. Oxford Science Publications, The Clarendon Press Oxford University Press, New York (1992)zbMATHGoogle Scholar
  10. 10.
    Potts, R.B.: Some generalized order-disorder transformations. Proc. Cambridge Philos. Soc. 48, 106–109 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Seymour, P.D.: Decomposition of regular matroids. J. Combin. Theory Ser. B 28(3), 305–359 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Sokal, A.D.: The multivariate Tutte polynomial (alias Potts model) for graphs and matroids. In: Surveys in Combinatorics 2005. London Math. Soc. Lecture Note Ser., vol. 327, pp. 173–226. Cambridge Univ. Press, Cambridge (2005)CrossRefGoogle Scholar
  13. 13.
    Truemper, K.: Matroid decomposition. Academic Press Inc., Boston (1992)zbMATHGoogle Scholar
  14. 14.
    Truemper, K.: A decomposition theory for matroids. V. Testing of matrix total unimodularity. J. Combin. Theory Ser. B 49(2), 241–281 (1990)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Leslie Ann Goldberg
    • 1
  • Mark Jerrum
    • 2
  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUnited Kingdom
  2. 2.School of Mathematical Sciences Queen MaryUniversity of LondonLondonUnited Kingdom

Personalised recommendations