Domination When the Stars Are Out

  • Danny Hermelin
  • Matthias Mnich
  • Erik Jan van Leeuwen
  • Gerhard J. Woeginger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6755)


We algorithmize the recent structural characterization for claw-free graphs by Chudnovsky and Seymour. Building on this result, we show that Dominating Set on claw-free graphs is (i) fixed-parameter tractable and (ii) even possesses a polynomial kernel. To complement these results, we establish that Dominating Set is not fixed-parameter tractable on the slightly larger class of graphs that exclude K 1,4 as an induced subgraph. Our results provide a dichotomy for Dominating Set in K 1,ℓ-free graphs and show that the problem is fixed-parameter tractable if and only if ℓ ≤ 3. Finally, we show that our algorithmization can also be used to show that the related Connected Dominating Set problem is fixed-parameter tractable on claw-free graphs.


Vertex Cover Interval Graph Polynomial Kernel Graph Class Free Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allan, R.B., Laskar, R.: On Domination and Independent Domination Numbers of a Graph. Discrete Mathematics 23, 73–76 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. Journal of Computer and System Sciences 75(8), 423–434 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chudnovsky, M., Fradkin, A.O.: An approximate version of Hadwiger’s conjecture for claw-free graphs. Journal of Graph Theory 63(4), 259–278 (2010)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Chudnovsky, M., Ovetsky, A.: Coloring Quasi-Line Graphs. Journal of Graph Theory 54(1), 41–50 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chudnovsky, M., Seymour, P.D.: The Structure of Claw-Free Graphs. London Mathematical Society Lecture Note Series: Surveys in Combinatorics, vol. 327, pp. 153–171 (2005)Google Scholar
  6. 6.
    Chudnovsky, M., Seymour, P.D.: Claw-free graphs. V. Global structure. Journal of Combinatorial Theory, Series B 98(6), 1373–1410 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cygan, M., Philip, G., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Dominating Set is Fixed Parameter Tractable in Claw-free Graphs, arXiv:1011.6239v1 (cs.DS) (2010) (preprint)Google Scholar
  8. 8.
    Damaschke, P.: Parameterized Enumeration, Transversals, and Imperfect Phylogeny Reconstruction. In: Downey, R., Fellows, M., Dehne, P. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 1–12. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness. Congressus Numerantium 87, 161–178 (1992)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  11. 11.
    Edmonds, J.: Paths, trees, and flowers. Canadian Journal of Mathematics 17, 449–467 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Eisenbrand, F., Oriolo, G., Stauffer, G., Ventura, P.: The Stable Set Polytope of Quasi-Line Graphs. Combinatorica 28(1), 45–67 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Faudree, R., Flandrin, E., Ryjáček, Z.: Claw-free graphs – A survey. Discrete Mathematics 164(1-3), 87–147 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Faenza, Y., Oriolo, G., Stauffer, G.: An algorithmic decomposition of claw-free graphs leading to an O(n 3)-algorithm for the weighted stable set problem. In: Proc. SODA 2011, pp. 630–646. ACM-SIAM (2011)Google Scholar
  15. 15.
    Feige, U.: A Threshold of ln n for Approximating Set Cover. Journal of the ACM 45, 634–652 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fernau, H.: Edge Dominating Set: Efficient Enumeration-Based Exact Algorithms. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 142–153. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Galluccio, A., Gentile, C., Ventura, P.: The stable set polytope of claw-free graphs with large stability number. Electronic Notes Discrete Mathematics 36, 1025–1032 (2010)CrossRefzbMATHGoogle Scholar
  18. 18.
    Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of domination in graphs. Marcel Dekker Inc., New York (1998)zbMATHGoogle Scholar
  19. 19.
    Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in graphs: Advanced Topics. Marcel Dekker Inc., New York (1998)zbMATHGoogle Scholar
  20. 20.
    Hsu, W.-L., Tsai, K.-H.: Linear-time algorithms on circular arc graphs. Information Processing Letters 40, 123–129 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Karp, R.M.: Reducibility Among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum, New YorkGoogle Scholar
  22. 22.
    King, A.D.: Claw-free graphs and two conjectures on ω, Δ, and χ, PhD Thesis, McGill University, Montreal, Canada (2009)Google Scholar
  23. 23.
    King, A.D., Reed, B.A.: Bounding χ in Terms of ω and Δ for Quasi-Line Graphs. Journal of Graph Theory 59(3), 215–228 (2008)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Marx, D.: Parameterized Complexity of Independence and Domination on Geometric Graphs. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 154–165. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. Journal of Combinatorial Theory, Series B 28(3), 284–304 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Misra, N., Philip, G., Raman, V., Saurabh, S.: The effect of girth on the kernelization complexity of Connected Dominating Set. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2010, Schloss Dagstuhl, Daghstuhl, Germany. LIPIcs, vol. 8, pp. 96–107 (2010)Google Scholar
  27. 27.
    Nakamura, D., Tamura, A.: A revision of Minty’s algorithm for finding a maximum weighted stable set of a claw-free graph. Journal of the Operations Research Society of Japan 44(2), 194–204 (2001)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Philip, G., Raman, V., Sikdar, S.: Solving Dominating Set in Larger Classes of Graphs: FPT Algorithms and Polynomial Kernels. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 694–705. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  29. 29.
    Plesník, J.: Constrained weighted matchings and edge coverings in graphs. Discrete Applied Mathematics 92(2-3), 229–241 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Sbihi, N.: Algorithme de recherche d’un stable de cardinalité maximum dans un graphe sans étoile. Discrete Mathematics 29(1), 53–76 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Stauffer, G.: Personal communicationGoogle Scholar
  32. 32.
    Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM Journal on Applied Mathematics 38(3), 364–372 (1980)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Danny Hermelin
    • 1
  • Matthias Mnich
    • 2
  • Erik Jan van Leeuwen
    • 3
  • Gerhard J. Woeginger
    • 4
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany
  2. 2.International Computer Science InstituteBerkeleyUSA
  3. 3.Department of InformaticsUniversity of BergenNorway
  4. 4.Department of Mathematics and Computer ScienceTU EindhovenThe Netherlands

Personalised recommendations