Advertisement

Robust Independence Systems

  • Naonori Kakimura
  • Kazuhisa Makino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6755)

Abstract

An independence system \(\mathcal{F}\) is one of the most fundamental combinatorial concepts, which includes a variety of objects in graphs and hypergraphs such as matchings, stable sets, and matroids. We discuss the robustness for independence systems, which is a natural generalization of the greedy property of matroids. For a real number α > 0, a set \(X\in\mathcal{F}\) is said to be α-robust if for any k, it includes an α-approximation of the maximum k-independent set, where a set Y in \(\mathcal{F}\) is called k-independent if the size |Y| is at most k. In this paper, we show that every independence system has a \(1/\sqrt{\mu(\mathcal{F})}\)-robust independent set, where \(\mu(\mathcal{F})\) denotes the exchangeability of \(\mathcal{F}\). Our result contains a classical result for matroids and the ones of Hassin and Rubinstein,[12] for matchings and Fujita, Kobayashi, and Makino,[7] for matroid 2-intersections, and provides better bounds for the robustness for many independence systems such as b-matchings, hypergraph matchings, matroid p-intersections, and unions of vertex disjoint paths. Furthermore, we provide bounds of the robustness for nonlinear weight functions such as submodular and convex quadratic functions. We also extend our results to independence systems in the integral lattice with separable concave weight functions.

Keywords

independence systems matroids exchangeability robustness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Calinescu, G., Chekuri, C., Pal, M., Vondrak, J.: Maximizing a submodular set function subject to a matroid constraint. SIAM Journal on Computing (to appear)Google Scholar
  2. 2.
    Chan, Y.H., Lau, L.C.: On linear and semidefinite programming relaxations for hypergraph matching. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2010), pp. 1500–1511 (2010)Google Scholar
  3. 3.
    Chandra, B., Halldórsson, M.: Greedy local improvement and weighted set packing approximation. Journal of Algorithms 39, 223–240 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Edmonds, J.: Matroids and the greedy algorithm. Mathematical Programming 1, 127–136 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for maximizing submodular set functions ii. Mathematical Programming Study 8, 73–87 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Frank, A.: How to make a digraph strongly connected. Combinatorica 1, 145–153 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fujita, R., Kobayashi, Y., Makino, K.: Robust matchings and matroid intersections. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6347, pp. 123–134. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Fukunaga, T., Halldórsson, M., Nagamochi, H.: Robust cost colorings. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2008), pp. 1204–1212 (2008)Google Scholar
  9. 9.
    Gabow, H.N.: An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems. In: Proceedings of the 15th ACM Symposium on Theory of Computing (STOC 1983), pp. 448–456 (1983)Google Scholar
  10. 10.
    Goemans, M.X., Harvey, N.J.A., Iwata, S., Mirrokni, V.: Approximating submodular functions everywhere. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2009), pp. 535–544 (2009)Google Scholar
  11. 11.
    Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization, 2nd edn. Springer, Heidelberg (1993)CrossRefzbMATHGoogle Scholar
  12. 12.
    Hassin, R., Rubinstein, S.: Robust matchings. SIAM Journal on Discrete Mathematics 15, 530–537 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hassin, R., Segev, D.: Robust subgraphs for trees and paths. ACM Transaction on Algorithms 2, 263–281 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hásted, J.: Clique is hard to approximate within n 1 − ε. Acta Mathematica 182, 105–142 (1999)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Jenkyns, T.A.: The efficacy of the “greedy” algorithm. In: Proceedings of the 7th Southeastern Conference on Combinatorics, Graph Theory and Computing, pp. 341–350 (1976)Google Scholar
  16. 16.
    Jenkyns, T.A.: The greedy traveling salesman’s problem. Networks 9, 363–373 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Jungnickel, D.: Graphs, Networks, and Algorithms, 2nd edn. Algorithms and Computation in Mathematics, vol. 5. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  18. 18.
    Kakimura, N., Makino, K.: Robust independence systems, Mathematical Engineering Technical Reports METR 2011-14, University of Tokyo (2011)Google Scholar
  19. 19.
    Korte, B., Hausmann, D.: An analysis of the greedy heuristic for independence systems. Annals of Discrete Mathematics 2, 65–74 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  21. 21.
    Lin, G., Nagarajan, C., Rajarama, R., Williamson, D.: A general approach for incremental approximation and hierarchical clustering. SIAM Journal on Computing 39, 3633–3669 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lucchesi, C.L.: A Minimax Equality for Directed Graphs, PhD thesis, University of Waterloo (1976)Google Scholar
  23. 23.
    Mestre, J.: Greedy in approximation algorithms. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 528–539. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Mettu, R.R., Plaxton, C.G.: The online median problem. SIAM Journal on Computing 32, 816–832 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Rado, R.: Note on independence relations. Proceedings of the London Mathematical Society 7, 300–320 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Schrijver, A.: Combinatorial Optimization — Polyhedra and Efficiency. Springer, Heidelberg (2003)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Naonori Kakimura
    • 1
  • Kazuhisa Makino
    • 1
  1. 1.Department of Mathematical InformaticsUniversity of TokyoTokyoJapan

Personalised recommendations