Advertisement

Submodular Cost Allocation Problem and Applications

  • Chandra Chekuri
  • Alina Ene
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6755)

Abstract

We study the Minimum Submodular-Cost Allocation problem (MSCA). In this problem we are given a finite ground set V and k non-negative submodular set functions f 1,…,f k on V. The objective is to partition V into k (possibly empty) sets A 1, ⋯ , A k such that the sum ∑  i = 1 k f i (A i ) is minimized. Several well-studied problems such as the non-metric facility location problem, multiway-cut in graphs and hypergraphs, and uniform metric labeling and its generalizations can be shown to be special cases of MSCA. In this paper we consider a convex-programming relaxation obtained via the Lovász-extension for submodular functions. This allows us to understand several previous relaxations and rounding procedures in a unified fashion and also develop new formulations and approximation algorithms for related problems. In particular, we give a (1.5 − 1/k)-approximation for the hypergraph multiway partition problem. We also give a min {2(1 − 1/k), H Δ}-approximation for the hypergraph multiway cut problem when Δ is the maximum hyperedge size. Both problems generalize the multiway cut problem in graphs and the hypergraph cut problem is approximation equivalent to the node-weighted multiway cut problem in graphs.

Keywords

Submodular Function Label Cost Submodular Function Minimization Monotone Submodular Function Symmetric Submodular Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set function subject to a matroid constraint (Extended abstract). In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 182–196. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Calinescu, G., Karloff, H.J., Rabani, Y.: An improved approximation algorithm for multiway cut. Journal of Computer and System Sciences 60(3), 564–574 (2000), Preliminary version in STOC 1998MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chekuri, C., Ene, A.: Approximation algorithms for submodular multiway partition (April 2011) (manuscript)Google Scholar
  4. 4.
    Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiterminal cuts. SIAM Journal on Computing 23(4), 864–894 (1994), Preliminary version in STOC 1992MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Delong, A., Osokin, A., Isack, H.N., Boykov, Y.: Fast approximate energy minimization with label costs. In: IEEE Computer Vision and Pattern Recognition (CVPR), pp. 2173–2180 (2010)Google Scholar
  6. 6.
    Freund, A., Karloff, H.J.: A lower bound of 8/(7+(1/k)-1) on the integrality ratio of the calinescu-karloff-rabani relaxation for multiway cut. Information Processing Letters 75(1-2), 43–50 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fukunaga, T.: Computing Minimum Multiway Cuts in Hypergraphs from Hypertree Packings. In: Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 15–28. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Garg, N., Vazirani, V.V., Yannakakis, M.: Multiway cuts in node weighted graphs. Journal of Algorithms 50(1), 49–61 (2004), Preliminary version in ICALP 1994MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ge, D., Ye, Y., Zhang, J.: The Fixed-Hub Single Allocation Problem: A Geometric Rounding Approach (2007), preprint http://www.stanford.edu/~yyye/revisedHub.pdf
  10. 10.
    Goel, G., Karande, C., Tripathi, P., Wang, L.: Approximability of combinatorial problems with multi-agent submodular cost functions. In: IEEE Symposium on Foundations of Computer Science (FOCS), pp. 755–764 (2009)Google Scholar
  11. 11.
    Goemans, M.X., Harvey, N.J.A., Iwata, S., Mirrokni, V.S.: Approximating submodular functions everywhere. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 535–544 (2009)Google Scholar
  12. 12.
    Iwata, S., Nagano, K.: Submodular function minimization under covering constraints. In: IEEE Symposium on Foundations of Computer Science (FOCS), pp. 671–680 (2009)Google Scholar
  13. 13.
    Karger, D.R., Klein, P.N., Stein, C., Thorup, M., Young, N.E.: Rounding algorithms for a geometric embedding of minimum multiway cut. Mathematics of Operations Research 29(3), 436–461 (2004), Preliminary version in STOC 1999MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kleinberg, J.M., Tardos, É.: Approximation algorithms for classification problems with pairwise relationships: Metric labeling and Markov random fields. Journal of the ACM (JACM) 49(5), 616–639 (2002), Preliminary version in FOCS 1999MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lawler, E.L.: Cutsets and partitions of hypergraphs. Networks 3(3), 275–285 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lovász, L.: Submodular functions and convexity. In: Mathematical Programming: The State of the Art, pp. 235–257 (1983)Google Scholar
  17. 17.
    Okumoto, K., Fukunaga, T., Nagamochi, H.: Divide-and-conquer algorithms for partitioning hypergraphs and submodular systems. Algorithmica, 1–20 (2010), Preliminary version in ISAAC 2009Google Scholar
  18. 18.
    Queyranne, M.: Minimizing symmetric submodular functions. Mathematical Programming 82(1), 3–12 (1998), Preliminary version in SODA 1995MathSciNetzbMATHGoogle Scholar
  19. 19.
    Svitkina, Z., Fleischer, L.: Submodular approximation: Sampling-based algorithms and lower bounds. In: IEEE Symposium on Foundations of Computer Science (FOCS), pp. 697–706 (2008)Google Scholar
  20. 20.
    Svitkina, Z., Tardos, É.: Min-max multiway cut. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 207–218. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Svitkina, Z., Tardos, É.: Facility location with hierarchical facility costs. ACM Transactions on Algorithms (TALG) 6(2), 1–22 (2010), Preliminary version in SODA 2006MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Vondrák, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: ACM Symposium on Theory of Computing (STOC), pp. 67–74 (2008)Google Scholar
  23. 23.
    Vondrák, J.: Symmetry and Approximability of Submodular Maximization Problems. In: IEEE Symposium on Foundations of Computer Science (FOCS), pp. 651–670 (2010)Google Scholar
  24. 24.
    Williamson, D.P., Shmoys, D.B.: The design of approximation algorithms (2010), preprint http://www.designofapproxalgs.com
  25. 25.
    Xiao, M.: Finding minimum 3-way cuts in hypergraphs. Information Processing Letters 110(14-15), 554–558 (2010), Preliminary version in TAMC 2008MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Zhao, L., Nagamochi, H., Ibaraki, T.: Greedy splitting algorithms for approximating multiway partition problems. Mathematical Programming 102(1), 167–183 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Chandra Chekuri
    • 1
  • Alina Ene
    • 1
  1. 1.Dept. of Computer ScienceUniversity of IllinoisUrbanaUSA

Personalised recommendations