The Decimation Process in Random k-SAT

  • Amin Coja-Oghlan
  • Angelica Y. Pachon-Pinzon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6755)


Non-rigorous statistical mechanics ideas have inspired a message passing algorithm called Belief propagation guided decimation for finding satisfying assignments of random k-SAT instances. This algorithm can be viewed as an attempt at implementing a certain thought experiment that we call the decimation process. In this paper we identify a variety of phase transitions in the decimation process and link these phase transitions to the performance of the algorithm.


Ferromagnetic Phase Satisfying Assignment Cavity Method Unit Clause Symmetric Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Achlioptas, D., Coja-Oghlan, A.: Algorithmic barriers from phase transitions. In: Proc. 49th FOCS, pp. 793–802 (2008)Google Scholar
  2. 2.
    Achlioptas, D., Coja-Oghlan, A., Ricci-Tersenghi, F.: On the solution space geometry of random formulas. Random Structures and Algorithms 38, 251–268 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Achlioptas, D., Moore, C.: Random k-SAT: two moments suffice to cross a sharp threshold. SIAM Journal on Computing 36, 740–762 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Achlioptas, D., Peres, Y.: The threshold for random k-SAT is 2k ln 2 − O(k). Journal of the AMS 17, 947–973 (2004)zbMATHGoogle Scholar
  5. 5.
    Achlioptas, D., Ricci-Tersenghi, F.: Random formulas have frozen variables. SIAM J. Comput. 39, 260–280 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Braunstein, A., Mézard, M., Zecchina, R.: Survey propagation: an algorithm for satisfiability. Random Structures and Algorithms 27, 201–226 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Coja-Oghlan, A.: On belief propagation guided decimation for random k-SAT. In: Proc. 22nd SODA, pp. 957–966 (2011)Google Scholar
  8. 8.
    Daudé, H., Mézard, M., Mora, T., Zecchina, R.: Pairs of SAT-assignments in random Boolean formulae. Theoretical Computer Science 393, 260–279 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Frieze, A., Suen, S.: Analysis of two simple heuristics on a random instance of k-SAT. Journal of Algorithms 20, 312–355 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kroc, L., Sabharwal, A., Selman, B.: Message-passing and local heuristics as decimation strategies for satisfiability. In: Proc. 24th SAC, pp. 1408–1414 (2009)Google Scholar
  11. 11.
    Krzakala, F., Montanari, A., Ricci-Tersenghi, F., Semerjian, G., Zdeborova, L.: Gibbs states and the set of solutions of random constraint satisfaction problems. Proc. National Academy of Sciences 104, 10318–10323 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Mertens, S., Mézard, M., Zecchina, R.: Threshold values of random K-SAT from the cavity method. Random Struct. Alg. 28, 340–373 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Mézard, M., Parisi, G., Zecchina, R.: Analytic and algorithmic solution of random satisfiability problems. Science 297, 812–815 (2002)CrossRefGoogle Scholar
  14. 14.
    Mitchell, D., Selman, B., Levesque, H.: Hard and easy distribution of SAT problems. In: Proc. 10th AAAI, pp. 459–465 (1992)Google Scholar
  15. 15.
    Montanari, A., Ricci-Tersenghi, F., Semerjian, G.: Solving constraint satisfaction problems through Belief Propagation-guided decimation. In: Proc. 45th Allerton (2007)Google Scholar
  16. 16.
    Ricci-Tersenghi, F., Semerjian, G.: On the cavity method for decimated random constraint satisfaction problems and the analysis of belief propagation guided decimation algorithms. J. Stat. Mech., 09001 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Amin Coja-Oghlan
    • 1
  • Angelica Y. Pachon-Pinzon
    • 1
  1. 1.Mathematics and Computer ScienceUniversity of WarwickCoventryUK

Personalised recommendations