Dynamic Planar Range Maxima Queries

  • Gerth Stølting Brodal
  • Konstantinos Tsakalidis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6755)


We consider the dynamic two-dimensional maxima query problem. Let P be a set of n points in the plane. A point is maximal if it is not dominated by any other point in P. We describe two data structures that support the reporting of the t maximal points that dominate a given query point, and allow for insertions and deletions of points in P. In the pointer machine model we present a linear space data structure with O(logn + t) worst case query time and O(logn) worst case update time. This is the first dynamic data structure for the planar maxima dominance query problem that achieves these bounds in the worst case. The data structure also supports the more general query of reporting the maximal points among the points that lie in a given 3-sided orthogonal range unbounded from above in the same complexity. We can support 4-sided queries in O(log2 n + t) worst case time, and O(log2 n) worst case update time, using O(nlogn) space, where t is the size of the output. This improves the worst case deletion time of the dynamic rectangular visibility query problem from O(log3 n) to O(log2 n). We adapt the data structure to the RAM model with word size w, where the coordinates of the points are integers in the range U = {0, …,2 w  − 1 }. We present a linear space data structure that supports 3-sided range maxima queries in \(O( \frac{\log n}{\log \log n } + t )\) worst case time and updates in \(O( \frac{\log n}{\log \log n } )\) worst case time. These are the first sublogarithmic worst case bounds for all operations in the RAM model.


Internal Node Maximal Point Priority Queue Query Point Sibling Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bayer, R.: Symmetric Binary B-Trees: Data Structure and Maintenance Algorithms. Acta Inf. 1, 290–306 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Kung, H.T., Luccio, F., Preparata, F.P.: On Finding the Maxima of a Set of Vectors. J. ACM 22(4), 469–476 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Overmars, M.H., van Leeuwen, J.: Maintenance of Configurations in the Plane. J. Comput. Syst. Sci. 23(2), 166–204 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Huddleston, S., Mehlhorn, K.: A New Data Structure for Representing Sorted Lists. Acta Inf. 17, 157–184 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Overmars, M.H., Wood, D.: On Rectangular Visibility. J. Alg. 9(3), 372–390 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making Data Structures Persistent. J. Comput. Syst. Sci. 38(1), 86–124 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Sundar, R.: Worst-Case Data Structures for the Priority Queue with Attrition. Inf. Process. Lett. 31(2), 69–75 (1989)CrossRefzbMATHGoogle Scholar
  8. 8.
    Frederickson, G.N., Rodger, S.H.: A New Approach to the Dynamic Maintenance of Maximal Points in a Plane. Discrete & Comp. Geom. 5, 365–374 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Janardan, R.: On the Dynamic Maintenance of Maximal Points in the Plane. Inf. Process. Lett. 40(2), 59–64 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fredman, M.L., Willard, D.E.: Trans-Dichotomous Algorithms for Minimum Spanning Trees and Shortest Paths. J. Comput. Syst. Sci. 48(3), 533–551 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Brodal, G.S., Chaudhuri, S., Radhakrishnan, J.: The Randomized Complexity of Maintaining the Minimum. Nord. J. Comput. 3(4), 337–351 (1996)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Brodal, G.S.: Partially Persistent Data Structures of Bounded Degree with Constant Update Time. Nord. J. Comput. 3(3), 238–255 (1996)MathSciNetGoogle Scholar
  13. 13.
    d’Amore, F., Franciosa, P.G., Giaccio, R., Talamo, M.: Maintaining Maxima under Boundary Updates. In: Bongiovanni, G., Bovet, D.P., Di Battista, G. (eds.) CIAC 1997. LNCS, vol. 1203, pp. 100–109. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  14. 14.
    Alstrup, S., Husfeldt, T., Rauhe, T.: Marked Ancestor Problems. In: Proc. 39th Foundations of Computer Science, pp. 534–544. IEEE Press, Los Alamitos (1998)Google Scholar
  15. 15.
    Kapoor, S.: Dynamic Maintenance of Maxima of 2-d Point Sets. SIAM J. Comput. 29(6), 1858–1877 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Arge, L., Vitter, J.S.: Optimal External Memory Interval Management. SIAM J. Comput. 32(6), 1488–1508 (2003)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gerth Stølting Brodal
    • 1
  • Konstantinos Tsakalidis
    • 1
  1. 1.MADALGO, Department of Computer ScienceAarhus UniversityDenmark

Personalised recommendations