Advertisement

Clique Clustering Yields a PTAS for max-Coloring Interval Graphs

  • Tim Nonner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6755)

Abstract

We are given an interval graph G = (V,E) where each interval I ∈ V has a weight w I  ∈ ℝ +  . The goal is to color the intervals V with an arbitrary number of color classes C 1, C 2, …, C k such that \( \sum_{i=1}^k \max_{I \in C_i} w_I \) is minimized. This problem, called max-coloring interval graphs, contains the classical problem of coloring interval graphs as a special case for uniform weights, and it arises in many practical scenarios such as memory management. Pemmaraju, Raman, and Varadarajan showed that max-coloring interval graphs is NP-hard (SODA’04) and presented a 2-approximation algorithm. Closing a gap which has been open for years, we settle the approximation complexity of this problem by giving a polynomial-time approximation scheme (PTAS), that is, we show that there is an (1 + ε) -approximation algorithm for any ε > 0 . Besides using standard preprocessing techniques such as geometric rounding and shifting, our main building block is a general technique for trading the overlap structure of an interval graph for accuracy, which we call clique clustering.

Keywords

Polynomial Time Interval Graph Color Class Graph Class Perfect Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arora, S.: Polynomial time approximation schemes for euclidean traveling salesman and other geometric problems. Journal of the ACM 45(5), 753–782 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bampis, E., Kononov, A., Lucarelli, G., Milis, I.: Bounded max-colorings of graphs. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506, pp. 353–365. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Becchetti, L., Korteweg, P., Marchetti-Spaccamela, A., Skutella, M., Stougie, L., Vitaletti, A.: Latency constrained aggregation in sensor networks. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 88–99. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    de Werra, D., Demange, M., Escoffier, B., Monnot, J., Paschos, V.T.: Weighted coloring on planar, bipartite and split graphs: Complexity and approximation. Discrete Applied Mathematics 157(4), 819–832 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Epstein, L., Levin, A.: On the max coloring problem. In: Kaklamanis, C., Skutella, M. (eds.) WAOA 2007. LNCS, vol. 4927, pp. 142–155. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Escoffier, B., Monnot, J., Paschos, V.T.: Weighted coloring: further complexity and approximability results. Inf. Process. Lett. 97(3), 98–103 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Feige, U., Kilian, J.: Zero knowledge and the chromatic number. J. Comput. Syst. Sci. 57(2), 187–199 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Finke, G., Jost, V., Queyranne, M., Sebö, A.: Batch processing with interval graph compatibilities between tasks. Discrete Applied Mathematics 156(5), 556–568 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gröschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Heidelberg (1988)CrossRefzbMATHGoogle Scholar
  10. 10.
    Guan, D.J., Zhu, X.: A coloring problem for weighted graphs. Inf. Process. Lett. 61(2), 77–81 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Halldórsson, M.M., Shachnai, H.: Batch coloring flat graphs and thin. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. SWAT, pp. 198–209. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in image processing and VLSI. Journal of the ACM 32(1), 130–136 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subset problems. J. ACM 22, 463–468 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kavitha, T., Mestre, J.: Max-coloring paths: Tight bounds and extensions. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 87–96. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Nonner, T.: Capacitated max -batching with interval graph compatibilities. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 176–187. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Pemmaraju, S.V., Raman, R.: Approximation algorithms for the max-coloring problem. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1064–1075. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Pemmaraju, S.V., Raman, R., Varadarajan, K.: Max-coloring and online coloring with bandwidths on interval graphs. ACM Transactions on Algorithms (accepted for publication)Google Scholar
  18. 18.
    Pemmaraju, S.V., Raman, R., Varadarajan, K.: Buffer minimization using max-coloring. In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), pp. 562–571 (2004)Google Scholar
  19. 19.
    Raman, R.: Personal communication (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tim Nonner
    • 1
  1. 1.IBM ResearchZurichSwitzerland

Personalised recommendations