A Tighter Insertion-Based Approximation of the Crossing Number

  • Markus Chimani
  • Petr Hliněný
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6755)


Let G be a planar graph and F a set of additional edges not yet in G. The multiple edge insertion problem (MEI) asks for a drawing of G + F with the minimum number of pairwise edge crossings, such that the subdrawing of G is plane. As an exact solution to MEI is NP-hard for general F, we present the first approximation algorithm for MEI which achieves an additive approximation factor (depending only on the size of F and the maximum degree of G) in the case of connected G. Our algorithm seems to be the first directly implementable one in that realm, too, next to the single edge insertion.

It is also known that an (even approximate) solution to the MEI problem would approximate the crossing number of the F-almost-planar graph G + F, while computing the crossing number of G + F exactly is NP-hard already when |F| = 1. Hence our algorithm induces new, improved approximation bounds for the crossing number problem of F-almost-planar graphs, achieving constant-factor approximation for the large class of such graphs of bounded degrees and bounded size of F.


Planar Graph Split Node Approximation Guarantee Virtual Edge Face Incident 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph partitioning. J. ACM 56, 5:1–5:37 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bienstock, D., Monma, C.L.: On the complexity of embedding planar graphs to minimize certain distance measures. Algorithmica 5(1), 93–109 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cabello, S., Mohar, B.: Crossing and weighted crossing number of near-planar graphs. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 38–49. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Cabello, S., Mohar, B.: Adding one edge to planar graphs makes crossing number hard. In: Proc. SoCG 2010, pp. 68–76. ACM, New York (2010)Google Scholar
  5. 5.
    Chimani, M.: Computing Crossing Numbers. PhD thesis, TU Dortmund, Germany (2008),
  6. 6.
    Chimani, M., Gutwenger, C., Mutzel, P., Wolf, C.: Inserting a vertex into a planar graph. In: Proc. SODA 2009, pp. 375–383 (2009)Google Scholar
  7. 7.
    Chimani, M., Hliněný, P.: A tighter insertion-based approximation of the crossing number. Full version. arXiv:1104.5039 (2011)Google Scholar
  8. 8.
    Chimani, M., Hliněný, P., Mutzel, P.: Approximating the crossing number of apex graphs. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 432–434. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Chuzhoy, J.: An algorithm for the graph crossing number problem. In: Proc. STOC 2011 (to appear, 2011)Google Scholar
  10. 10.
    Chuzhoy, J., Makarychev, Y., Sidiropoulos, A.: On graph crossing number and edge planarization. In: Proc. SODA 2011, pp. 1050–1069. ACM Press, New York (2011)Google Scholar
  11. 11.
    Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM Journal on Computing 25, 956–997 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Even, G., Guha, S., Schieber, B.: Improved approximations of crossings in graph drawings and vlsi layout areas. SIAM J. Comput. 32(1), 231–252 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gitler, I., Hliněný, P., Leanos, J., Salazar, G.: The crossing number of a projective graph is quadratic in the face-width. Electronic Notes in Discrete Mathematics 29, 219–223 (2007)CrossRefzbMATHGoogle Scholar
  14. 14.
    Gutwenger, C.: Application of SPQR-Trees in the Planarization Approach for Drawing Graphs. PhD thesis, TU Dortmund, Germany (2010)Google Scholar
  15. 15.
    Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Gutwenger, C., Mutzel, P.: An experimental study of crossing minimization heuristics. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 13–24. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Gutwenger, C., Mutzel, P., Weiskircher, R.: Inserting an edge into a planar graph. Algorithmica 41(4), 289–308 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hliněný, P., Chimani, M.: Approximating the crossing number of graphs embeddable in any orientable surface. In: Proc. SODA 2010, pp. 918–927 (2010)Google Scholar
  19. 19.
    Hliněný, P., Salazar, G.: On the crossing number of almost planar graphs. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 162–173. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Hliněný, P., Salazar, G.: Approximating the crossing number of toroidal graphs. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 148–159. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM Journal on Computing 2(3), 135–158 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Tutte, W.T.: Connectivity in graphs. Mathematical Expositions, vol. 15. University of Toronto Press (1966)Google Scholar
  23. 23.
    Vrt’o, I.: Crossing numbers of graphs: A bibliography (2011),
  24. 24.
    Ziegler, T.: Crossing Minimization in Automatic Graph Drawing. PhD thesis, Saarland University, Germany (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Markus Chimani
    • 1
  • Petr Hliněný
    • 2
  1. 1.Algorithm EngineeringFriedrich-Schiller-University JenaGermany
  2. 2.Faculty of InformaticsMasaryk University BrnoCzech Republic

Personalised recommendations