Improved Approximation for the Directed Spanner Problem

  • Piotr Berman
  • Arnab Bhattacharyya
  • Konstantin Makarychev
  • Sofya Raskhodnikova
  • Grigory Yaroslavtsev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6755)


We give an \(O(\sqrt{n}\log n)\)-approximation algorithm for the problem of finding the sparsest spanner of a given directed graph G on n vertices. A spanner of a graph is a sparse subgraph that approximately preserves distances in the original graph. More precisely, given a graph G = (V,E) with nonnegative edge lengths dE → ℝ ≥ 0 and a stretch k ≥ 1, a subgraph H = (V,E H ) is a k-spanner of G if for every edge (u,v) ∈ E, the graph H contains a path from u to v of length at most k ·d(u,v). The previous best approximation ratio was \(\tilde{O}(n^{2/3})\), due to Dinitz and Krauthgamer (STOC ’11).

We also present an improved algorithm for the important special case of directed 3-spanners with unit edge lengths. The approximation ratio of our algorithm is \(\tilde{O}(n^{1/3})\) which almost matches the lower bound shown by Dinitz and Krauthgamer for the integrality gap of a natural linear programming relaxation. The best previously known algorithms for this problem, due to Berman, Raskhodnikova and Ruan (FSTTCS ’10) and Dinitz and Krauthgamer, had approximation ratio \(\tilde{O}(\sqrt{n})\).


Approximation Ratio Linear Program Relaxation Improve Approximation Edge Cost Short Path Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete & Computational Geometry 9(1), 81–100 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Awerbuch, B.: Communication-time trade-offs in network synchronization. In: PODC, pp. 272–276 (1985)Google Scholar
  3. 3.
    Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in expected \(\tilde{O} (n^2)\) time. ACM Transactions on Algorithms 2(4), 557–577 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Berman, P., Raskhodnikova, S., Ruan, G.: Finding sparser directed spanners. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS. LIPIcs, vol. 8, pp. 424–435. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)Google Scholar
  5. 5.
    Bhattacharyya, A., Grigorescu, E., Jha, M., Jung, K., Raskhodnikova, S., Woodruff, D.P.: Lower bounds for local monotonicity reconstruction from transitive-closure spanners. In: Serna, M.J., Shaltiel, R., Jansen, K., Rolim, J.D.P. (eds.) APPROX 2010, LNCS, vol. 6302, pp. 448–461. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Bhattacharyya, A., Grigorescu, E., Jung, K., Raskhodnikova, S., Woodruff, D.: Transitive-closure spanners. In: SODA, pp. 932–941 (2009)Google Scholar
  7. 7.
    Cohen, E.: Fast algorithms for constructing t-spanners and paths with stretch t. SIAM J. Comput. 28(1), 210–236 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cohen, E.: Polylog-time and near-linear work approximation scheme for undirected shortest paths. JACM 47(1), 132–166 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cowen, L.: Compact routing with minimum stretch. J. Algorithms 38(1), 170–183 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cowen, L., Wagner, C.G.: Compact roundtrip routing in directed networks. J. Algorithms 50(1), 79–95 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dinitz, M., Krauthgamer, R.: Directed spanners via flow-based linear programs. In: Vadhan, S. (ed.) STOC. ACM, New York (to appear, 2011)Google Scholar
  12. 12.
    Dodis, Y., Khanna, S.: Designing networks with bounded pairwise distance. In: STOC, pp. 750–759 (1999)Google Scholar
  13. 13.
    Elkin, M.: Computing almost shortest paths. In: PODC, pp. 53–62 (2001)Google Scholar
  14. 14.
    Elkin, M., Peleg, D.: Strong inapproximability of the basic k-spanner problem. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 636–647. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Elkin, M., Peleg, D.: The client-server 2-spanner problem with applications to network design. In: SIROCCO, pp. 117–132 (2001)Google Scholar
  16. 16.
    Elkin, M., Peleg, D.: Approximating k-spanner problems for k ≥ 2. Theor. Comput. Sci. 337(1-3), 249–277 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Elkin, M., Peleg, D.: The hardness of approximating spanner problems. Theory Comput. Syst. 41(4), 691–729 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in the data-stream model. SIAM J. Comput. 38(5), 1709–1727 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Feldman, M., Kortsarz, G., Nutov, Z.: Improved approximating algorithms for Directed Steiner Forest. In: Mathieu, C. (ed.) SODA, pp. 922–931. SIAM, Philadelphia (2009)Google Scholar
  20. 20.
    Jha, M., Raskhodnikova, S.: Testing and reconstruction of Lipschitz functions with applications to data privacy. Electronic Colloquium on Computational Complexity (ECCC) TR11-057 (2011)Google Scholar
  21. 21.
    Kortsarz, G., Peleg, D.: Generating sparse 2-spanners. J. Algorithms 17(2), 222–236 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kortsarz, G.: On the hardness of approximating spanners. Algorithmica 30(3), 432–450 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Peleg, D., Schäffer, A.A.: Graph spanners. J. Graph Theory 13(1), 99–116 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM J. Comput. 18(4), 740–747 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables. JACM 36(3), 510–530 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Raskhodnikova, S.: Transitive-closure spanners: a survey. In: Goldreich, O. (ed.) Property Testing. LNCS, vol. 6390, pp. 167–196. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Roditty, L., Thorup, M., Zwick, U.: Roundtrip spanners and roundtrip routing in directed graphs. ACM Transactions on Algorithms 4(3) (2008)Google Scholar
  28. 28.
    Thorup, M., Zwick, U.: Compact routing schemes. In: SPAA, pp. 1–10. ACM, New York (2001)Google Scholar
  29. 29.
    Thorup, M., Zwick, U.: Approximate distance oracles. JACM 52(1), 1–24 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Piotr Berman
    • 1
  • Arnab Bhattacharyya
    • 2
  • Konstantin Makarychev
    • 3
  • Sofya Raskhodnikova
    • 1
  • Grigory Yaroslavtsev
    • 1
  1. 1.Pennsylvania State UniversityUSA
  2. 2.Massachusetts Institute of TechnologyUSA
  3. 3.IBM T.J. Watson Research CenterUSA

Personalised recommendations