Dynamic Workflow Adaptation over Adaptive Infrastructures

  • Rafael Tolosana-Calasanz
  • José A. Bañares
  • Omer F. Rana
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6682)


There is emerging interest in many scientific disciplines to deal with “dynamic” data, arising from sensors and scientific instruments, which require workflow graphs that can be dynamically adapted – as new data becomes available. Additionally, the elastic nature of many Cloud environments subsequently enable such dynamic workflow graphs to be enacted more efficiently. One of the challenges of scientific workflows is that they must be designed with the needed level of dynamism to take account of the availability of data and the variability of the execution environment, which can be dynamically scaled out based on demand (and budget). In this paper, we present a novel approach for specifying scientific workflows with the two main requirements of: (i) dynamic / adaptive workflow structure well suited for and responsive to change, and (ii) support for large-scale and variable parallelism. We utilise the superscalar pipeline as a model of computation and the well-known Montage workflow for illustrating our approach.


Workflow Adaptation Exception Handling Petri nets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zinn, D., Hart, Q., McPhillips, T., Ludaescher, B., Simmhan, Y., Giakkoupis, M., Prasanna, V.K.: Towards reliable, performant workflows for streaming-applications on cloud platforms. In: 11st International Symposium on Cluster, Cloud and Grid Computing (CCGrid 2011), Newport Beach, USA (2011)Google Scholar
  2. 2.
    Pautasso, C., Alonso, G.: Parallel computing patterns for Grid workflows. In: Proceedings of the HPDC 2006 Workshop on Workflows in Support of Large-Scale Science (WORKS 2006), Paris, France (June 19-23, 2006)Google Scholar
  3. 3.
    Kim, H., el-Khamra, Y., Jha, S., Parashar, M.: An autonomic approach to integrated hpc grid and cloud usage. In: Proceedings of 5 th IEEE International Conference on e-Science (e-Science 2009), Oxford, UK (2009)Google Scholar
  4. 4.
    Abramson, D., Enticott, C., Altintas, I.: Nimrod/k: towards massively parallel dynamic grid workflows. In: Proceedings of the ACM/IEEE Conference on High Performance Computing, SC 2008. IEEE/ACM, Austin, Texas, USA (2008)Google Scholar
  5. 5.
    Kummer, O., Wienberg, F., Duvigneau, M., Schumacher, J., Köhler, M., Moldt, D., Rölke, H., Valk, R.: An Extensible Editor and Simulation Engine for Petri Nets: Renew. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 484–493. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Tolosana-Calasanz, R., Bañares, J.A., Rana, O.F., Álvarez, P., Ezpeleta, J., Hoheisel, A.: Adaptive exception handling for scientific workflows. Concurr. Comput.: Pract. Exper. 22, 617–642 (2010)zbMATHGoogle Scholar
  7. 7.
    Tolosana-Calasanz, R., Bañares, J.A., Álvarez, P., Ezpeleta, J.: Vega: A service-oriented grid workflow management system. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part II. LNCS, vol. 4804, pp. 1516–1523. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Deelman, E., Mehta, G., Singh, G., Su, M., Vahi, K.: Pegasus: Mapping Large-Scale Workflows to Distributed Resources. In: Workflows for eScience, pp. 376–394. Springer, Heidelberg (2007)Google Scholar
  9. 9.
    van der Aalst, W., Moldt, D., Rolke, H.: Pattern based workflow design using reference nets. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. LNCS, vol. 2678, pp. 246–260. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Pautasso, C., Heinis, T., Alonso, G.: Autonomic execution of Web service compositions. In: 2005 IEEE International Conference on Web Services (ICWS 2005), July 11-15, pp. 435–442. IEEE Computer Society, Orlando (2005)Google Scholar
  11. 11.
    Tolosana-Calasanz, R., Bañares, J.A., Rana, O.F.: Autonomic streaming pipeline for scientific workflows. Concurr. Comput.: Pract. Exper. 1–31 (to appear, 2011)Google Scholar
  12. 12.
    Taylor, I., Shields, M., Wang, I., Harrison, A.: The Triana Workflow Environment: Architecture and Applications. In: Workflows for eScience, pp. 320–339. Springer, Heidelberg (2007)Google Scholar
  13. 13.
    Pautasso, C., Alonso, G.: The jopera visual composition language. J. Vis. Lang. Comput. 16, 119–152 (2005)CrossRefGoogle Scholar
  14. 14.
    Ngu, A., Bowers, S., Haasch, N., McPhillips, T., Critchlow, T.: Flexible scientific workflow modeling using frames, templates, and dynamic embedding. Scientific and Statistical Database Management, 566–572 (2008)Google Scholar
  15. 15.
    Oinn, T., Greenwood, M., Addis, M., Alpdemir, M.N., Ferris, J., Glover, K., Goble, C., Goderis, A., Hull, D., Marvin, D., Li, P., Lord, P., Pocock, M.R., Senger, M., Stevens, R., Wipat, A., Wroe, C.: Taverna: lessons in creating a workflow environment for the life sciences: Research articles. Concurr. Comput.: Pract. Exper. 18, 1067–1100 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rafael Tolosana-Calasanz
    • 1
  • José A. Bañares
    • 1
  • Omer F. Rana
    • 2
  1. 1.Instituto de Investigación en Ingeniería de Aragón (I3A), Department of Computer Science and Systems EngineeringUniversity of ZaragozaSpain
  2. 2.School of Computer ScienceCardiff UniversityUK

Personalised recommendations